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CHAPTER 1. INTRODUCTION
General

Ultimate strength design of structures which includes
postelastic effects has gained importance in recent years.
Ultimate strength design of reinforced concrete building
frames and slabs is based on semi-empirical methods using re-
sults from extensive laboratory testing programs. Reinforced
concrete is also beginning to be used in special structures
such &s nuclear containment structures and pressure vessels.
Stringent safety requirements of such special structufes have
given additional incentives to the development of accurate
analytical methods which can predict the behavior of reinforced
concrete structures from zero to failure load.

An accurate analysis of reinforced concrete structures is
complicated by a number of factors. The material properties
of concrete is an area that is still not well understood.

As an example, there is no universally accepted failure cri-
terion for concrete for a general state of stress. The in-
herent variability of concreste, its cracking, creep, and
shrinXage behavior, nonhomogencus character and the compiex
composite action between the steel reinforcement and the con-
crete are some additional complicating factors. Difficulties
in analysis procedures are compounded when realistic boundary

conditions and loading history are considered. Thus the oniy

practical approach to a realistic nonlinear analyesis of



reinforced concrete structures is the use of approximate
methods rather than a rigorous approach using continuum
mechanics.

The success of the finite element method in solving com-
plex linear elastic problems is well known. A great deal of
progress has taken place in recent years in the application
of the finite element method as an analytical tool. Many
applications of the finite element method considering material
and geometric nonlinearity in the static and dynamic analysis

of structures can he found in recent lite

-

ture (1) In the
last eight years, the finite element method has also been

applied to the analysis of reinforced concrete structures.
Previous Work

One of the early applications of the finite element
method to the study of reinforced concrete structures was made
by Ngo and Scordelis (2). They performed linear elastic
analyses of reinforced concrete beams with predefined cracks
and also included special bond link elements between the steel

reinforcement and the concrete to simulate bond-siip charac-

for the study of the behavior of reinforced concrete structures
over the entire range of loading. Nilson (3) introduced non-
linear material properties and nbnlinear bond-slip relation-
ships in the analysis of reinforced concrete beams. The loads

were introduced incrementally but the computer analysis had to



be stopped at the end of each increment and a new set of up-
dated input to the computer program was necessary. Later de-
velopments in the nonlinear analysis made the above approach
obsolete.

Franklin (4) considering nonlinear material properties
analyzed reinforced concrete frames with or without infilled
walls over the entire range of loading. Rashid (5) performed
a nonlinear analysis of axisymmetric prestressed concrete

pressure vessels and studied the response of the structure

sidered concrete cracking, creep of thz concrete, temperature
stresses and the influence of unbonded prestressing reinforce-
ment together with the bonded steel reinforcement. Cervenka
and Gerstle (6) made an inelastic analysis of reinforced con-
crete panels. They added the sfiffness of the steel to the
stiffness of the concrete at the constitutive matrix level and
modeled the reinforced concrete as a composite finite element.
This eliminated the necessity of modeling the reinforcement

as separate finite elements. The composite material approach

has been extensively used by later researchers and is also used

e A2
K& Lile

Yuzugullu and Schnobrich (7) studied the inelastic be-
havior of shear wall-frame systems treating the concrete as an
elastic-plastic material much along the same lines as Cervenka
and Gerstle (6). Yuzugullu calculated a hypothetical crack

width using the strain as a measure. The cracks were allowed



to open and close during the redistribution of stress and load-
ing. Opening and closing of the cracks though possible is not
generally considered for monotonically increasing loads but may
be of significance under cyclic loadings. Most of the above
investigations used plane stress finite elements or modifica-
tions thereof.

With the development of efficient bending finite elements,
several investigators modeled the nonlinear bending behavior of
reinforced concrete slabs using bending elements. Jofriet and
MchNeice (8) analyzed a number of reinforced concrete slabs us-
ing an empirical flexural plate rigidity matrix. Bell and
Elms (9) also made a nonlinear analysis of slabs using a simi-
lar approach. The use of a specific nonlinear moment-curvature
relationship can be considered as a macroscopic "modified EI"
approach.

Nonlinear bending behavior of reinforced concrete slébs
can also be modeled by dividing the slab into a number of
layers along the depth and assuming different elastic moduli
for each layer as a function of layer strains. Scanlon and
Murray (10) used such an approach to predict time dependent
reinforced concrete slab deflections. Dotreppe, Schnobrich
and Pecknold (11) used a layered finite element péocedure for
the inelastic analysis of reinforced concrete slabs. The lay-
ering technique results in the coupling of membrane and bending
effects for anisotropic reinforced concrete slabs. Scanlon and

Murray (1C) and Dotreppe et al. (11) introduced simplifying



assumptions to eliminate the element inplane nodal degrees of
freedom. Hand, Pecknold and Schnobrich (12, 13) did not make
any such simplifying assumptions and included both inplane and
bending stiffness matrices in their investigation. Hand et al.
analyzed a number of slabs and a shell up to failure load and
compared the theoretical results with the experimental results.

Lin and Scordelis (1%, 15) analyzed the nonlinear response of

slabs, a hyperbolic paraboloid shell and a cylinderical shell
in a manner similar to Hand et al. (12). Lin used a flat
triangular element to approximate the curved shells. Bell
and Elms (16) used the macroscopic "modified EI" approach to
study the nonlinear behavior of thin reinforced concrete
cylindrical shells. |

It is thus evident that the present degree of sophistica—}
tion in nonlinear analysis using high speed digital computers

fawr avaasndo h
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e
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he actual stress-
strain relationships of concrete under multiaxial stress states.
Consequently, basic experimental research in the mechanical
properties of concrete is under way at many research institu-
tions. Xupfer, Hilsdrof and Rusch (17) extensively studied
the behavior of concrete under biaxial stresses. Liu, Nilson
and Slate (18, 19, 20) studied the stress-strain relationship
and fracture of concrete in biaxial compression. Based on the
experimental results, they also developed orthotropic constitu-
tive matrix equations suitable for use in plane stress finite

~elements. Kupfer and Gerstle {(21) proposed matrix constitutive



equations for a biaxial stress state in concrete using variable
shear and bulk moduli. Darwin and Pecknold (22) developed

an inelastic concrete model for cyclic biaxial loading of
concreta. 1 of the research investigations cited earlier
considered the nonlinearity introcduced in the analysis of the
structure due to the degradation of material stiffness. Berg,
Bergan and Holland (23, 24) extended the analysis of reinforced
concrete slabs to include the nonlinear effects due to change
in geometry. Aldstedt (25) performed a material and geometric
nonlinear analysis of frames.

The versafility‘of the finite element method has resulted
in an explosion of research involving its application. Appli-
cation of the finite element method to the analysis of rein-
forced concrete structures are toc numerous to cover completely

here. Significant amounts of research work is being done at

Swansea (27) and by the nuclear reactor industry. The works
of Valliappan and Nath (28), Valliappan and Doolan (29),
Suidan and Schnobrich (30), Colville and Abbasi (31), Salem
and Mohraz (32), Wanchoo and May (33) deserve mention. A re-
view of the various aspects of the finite eiement analysis of
reinforced concrete structures can be found in a paper by

Scordelis (34).



Object and Scope

The purpose of this study is fo develop a method of
analysis using finite element techniques which is applicable
to reinforced concrete structures and which incorporates
material nonlinearity and also geometric nonlinearity. Bi-
axial failure criteria for concrete that closely fit with the
experimental results are used. Concrete is treated as an
orthotropic material and constitutive relationships that
closely duplicate experimentally observed biaxial stress-
strain responses of concrete are used. The analytical load-
deflection response, internal stress distribution, cracking
and crushing of the concrete, yielding of the steel are étudied'
under monotonically increasing loads. A layered rectangular
flat plate element with axial and bending stiffness is used.
The flat plate element used is capable of modeling beams,
siabs, columns, and shells.

An incremental and iterative procedure is used for the

£ dela < -~
i v wiisLlililica

solution o
considering material nonlinearity alone are used to study the
behavior of siabs and beams. Nonlinear effects due to change
in geometry are considered for beam-columns., Initial stress
and initiél displacement matrices are developed for the layered
element using the total Lagrangian apprcach. The effects of
bond-slip between the concrete and the steel reinforcement,

time dependent creep strains and load reversals are not con-



sidered as a part of this study.

Finally, several numerical examples are studied. The
analytical results for beams, beam-columns and slabs are com-
pared with actual experimental results. ‘The analytical re-
sults are also compared with results obtained by other re-
searchers who used different idealizations to study the same

basic problem.



CHAPTER 2. MATERIAL MODELING

General

This study uses the finite element method as the basis of
an analysis of reinforced concrete structures from zero to
failure load. The accuracy of the final results will closely
depend upon the capability of the material model to duplicate

the important characteristics of the structural material. One

important aspect of this study is the mocdeling of short temm
stress-strain relationship and failure criteria for concrete

in the biaxial stress state. The model to be used will closely
follow the works of Kupfer and Gerstle (21) and Darwin and

Pecknold (22).
Biaxial Failure Criteria for Concrete

Several experimental investigations (17) of the biaxial
strength of concrete can be found in literature. The wide
discrepancy found in the strength results can be attributed to
unintended support restraints provided by the bearing plates.

It is well known that the details of transferring the load to

T the Stress-state in

the specimen. In this respect, two recent experimental in-
vestigations of Kupfer et al. (17) and Liu (18) are significant.
Their test apparatus was carefully designed to minimize the
lateral restraints on the specimen. Thus the experimental

results obtained by Kupfer et al. (17) will be used as the
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basis for material modeling of concrete in this study.

The experimental failure stresses for concrete for dif-
ferent ratios of principal stresses are plotted in Fig. 1.
The observed increase in biaxial compressive strength in the
compression-compression region over the uniaxial compressive
strength can be attributed to the effect of confinement. The
maximum experimentally observed increase in biaxial strength
over the uniaxial strength is 27 percent. An empirical equa-
tion closely fitting the experimental results in the compres-
sion-compression region was proposed by Kupfer and Gerstle
(21) and will also adopted in this study.

If O1c and Oy, 2are the failure stresses in the principal
stress directions 1 and 2 respectively and fé-is the cylinder
strength of concrete, an equation defining the failure en-

velope c¢an be wriivten as

o G g
(A2 + 282 - 3.65 =€ = 0 (2.1)
c £ C

In the above equation 91¢ 2 %o¢ by algebric sign convention.
The algebric sign convention {tension positive) will be used

in this text throughout the development. Defining the ratio of
o

principal stress as a, = 3;9. equation 2.1 is rewritten as
2c
1 + 3.65 o, )
G = . f' (202

Thus, for a given a,, T3 and o,, (equation 2.2}, gy, Can be
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w

Fig. 1. TFailure envelope for concrete in biaxial compressicn
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obtained as folliows:s

where 0 < a, s 1l in this region.

Tension-compression region

Due to the difficulties in introducing tensile forces
into concrete specimens, very limited experimental data are
available concerning the failure strength of concrete in the
tension-compression and tension-tension regions. The experi-
mental failure stresses obtained by Kupfer et al. (17) are
plotted in Fig. 2 for three different strengths of concrete.

The failure envelopes suggested by Kupfer and_Gerstle
(21) and Darwin and Pecknold (22) are shown in Fig. 3. Darwin
used a combination of a straight line of constant tensile
strength and a curved line to define the failure envelope in
the tension-compression region (Fig. 3). Kupfer proposed a
straight line reduction in tensile strength with an increase
in compressive stress (Fig. 3). Though the straight line
equation suggested by Kupfer agrees well with the experimental
results it introduces an undesirable discontinuity in the

failure envelope when a = 0.

tinuity in the failure envelope at Ope = -0.65 also exists

T

in the model proposed by Darwin and Pecknold (22). A slightly
modified failure envelope is proposed in this study.
The failure envelope in the tension-compression region is

defined by a straight line of the form
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and by the extension of the failure envelope of the compression-

(2.4)

compression region (equation 2.2) into the tension-compression
region until it intersects the straight line given by equation

2.4 (Fig. 2). In equation 2.4 when 0o = o, 99 takes on

I2e Ty
the value of f‘c and when —= = -0.8, ¢ has the value of —==,
lfc| 1c 2

where ft is the tensile strength of concrete. At high com-
pressive stresses the failure envelope used to define
compression-compression region (equation 2.2) is extended to

also define the tension-compression region.

Tension-tension region

Experimental results (Fig. 2) indicate that the failure
stresses in this region are not significantly affected by the
biaxial state of stress. Hence it is assumed that the failure
envelope in this region is a rectangle and the failure stress

is always equal to fi,» independent of a, (Fig. 2).
Short Term Biaxial Stress-Strain Relationship of Concrete

General

While modeling and implementing an empirical biaxial
failure criteria of concrete into the analysis is comparatively
simple, an accurate modeling of the biaxial stress-strain
relationships of the concrete is more complex. A study of the

uniaxial stress-strain diagram of concrete in compression
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illustrates many important features. The stress-strain curve
is initially straight and then becomes increasingly nonlinear
as the internal microcracking develops and propagates. The
stress-strain curve after reaching a peak value has an un-
loading portion which is machine or strain rate dependent.
The shape of the stress-strain diagram in tension is more
nearly linear than the comparable diagram obtained for com-
pression. A good review of the several empirical equations
suggested to model the uniaxial concrete compressive stress-
strain reilationship is given by Popovics (35).

Several previous studies of reinforced concrete structures
using the finite element method have used a variety of models
to describe the stress-strain relationship of concrete. Ngo
and Scordelis (2) considered concrete to be an isotropic
linear elastic material having different tensile and compres-
sive strengths. Nilson (3) used a2 curve:
strain relationship in compression based on Saenz's equation
and assumed the material to be linearly elastic in tension.
Franklin (4) used a piecewise linear stress-strain diagram to
model more closely the experimental uniaxial curves. In a
number of recent studies (6, 7, 14, 32) concrete was modeled
as a linearly elastic-perfectly plastic material in compres-
sion. A more refined modei than the above was used by Hand
et al. (12)., Hand et al. (12) used a bilinearly elastic-
perfectly plastic model for cencrete in compression. Noﬁe of

the above studies considered the effect of the biaxial stress
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field on the stress-strain curve of the concrete other than
through the use of the Poisson's effect.
A typical stress-strain response of concrete under bhi-

axial compression for @ = 1 is shown in Fig. 4. The observed

c
‘reduction in strain cannot be entirely explained by the
Poisson's effect alone. ILiu et al. (19) attribute the large
strain reduction to the confinement of the microcracking due
to the presence of biaxial stresses. Thus, the stress inten-
sity in one direction also affects the material stiffness in
ion. This then led o modeiing of
concrete as a stress induced orthotropic material by Liu et
al. (20) and Darwin and Pecknold (22). This study also con-
siders concrete tc be an orthotropic material and the material
model used will be the same as that developed by Darwin and
Pecknold (22) except as modified in the tension-compression

region.

Orthetropic constitutive relationships

The nonlinear problem is solved using incremental and
iterative techniques. The load is applied to the structure in
small increments and iterations are performed within each in-
crement of load until equilibrium convergence is obtained.

The material is assumed to be linearly elastic within each
iteration. As the analysis proceeds, the degradation in the
material stiffness is accounted for by continuously updating

the material stiffness based on the accumulated total strains.



-1.2
-1.1
-1.0:
-0.9
-0.¢&

-O-r[)

!

18

62, a =1

21.0
€5 X 103, inch/inch

Fig. 4. Experimental

in compression

I
-2.0

uniaxial

—e

-3.lo =

and bilaxial curves for concrete



19

The generalized Hooke's law for a continuous material is

=c €. .
O'-l'bij j (2.5)
where g; are the stress components, cij are constants for the
material and €j are the strain components. The summation con-

vention of the reveated index is implied in the eguation.

Using the symmetry of stresses and strains and by assuming the
existence of a strain energy density function it can be shown
that the number of independent elastic constants for the most

general anisotropic body is 21 (36). For the case of a two-

constants can be further reduced to four (37). 1In the case of
uncracked concrete, the orthotropic material directicns are al-
ways assumed to coincide with the principal stress directions.
Let El' vy and E5, v, be the elastic moduli and Poisson's
ratios in directions 1 and 2 respectively and G12 be the
shear modulus associated with directions 1-<2. It should be
noted that of the five constants El' Ez, Vit Voo and G12’ only
four are independent.

Considering first the principal stresses the relationship
between the incremental stresses and the incremental strains

can ve written as follows:

zsci i _ 1 El szl AGi (2.6)

where lez = szl and thus vy and v, are not independent. De-

fining an effective Poisson's ratio

v = Vivo (2.7)



20

Equation 2.6 can be rewritten as

{%ai}= 1 [El vJEiEz [Aéi}
AGé 1 - vEE VJElEz E2 | AEé

Expanding the constitutive matrix to include the shear effect

(2.8)

under a general state, we get,

r-ACSi El VJElEz 0 AGi
Agé = -l_l_-é- -\}ElEz E2 0 AG.; (2.9)
-\
_veyar '
LAG]'-Q _O 0 (1-v )G12 | _Aelzﬂ

wherezscig, AEiZ and Giz are the shear stress, the engineering
shear strain and the shearing modulus in direction 1-2 respec-
tively. It should be noted that when the concrete has cracked,
the principal stress directions do not necessarily correspond
to the principal material directions. Equation 2.9 can also
be written in matrix notation as
lac*] = [ef 4] [a€"] (2.10)

where [~'.] is the constitutive matrix in the principai materi-
al directions._

In general, the meterial directions will not coincide.

with the element reference axes. Thus, the constitutive

i

z in the material directions must be transformed to

element reference axes using the transformation,

[ey5) = T [ey] T (2.11)

where
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-2cs +42c¢s cz-s2

and, [e;

axes and 6 is the angle measured counterclockwise from element

j] is the constitutive matrix along element reference

x-axis to material axes.

Shear modulus

When concrete is treated as an orthotropic material

the shear modulus is an indepandent elastic constant which must
be determined experimentally. No experimental data is present-
ly available for such a determination of the shear modulus.
Franklin (4), Liu (18) and Darwin and Pecknold (22) proposed
approximate expressions for the shear modulus knowing the elas-
tic moduli in-the principal directions. The approximate ex-
pression for the shear modulus assumes importance when the

concrete to pe considered 1s cracked in 3 single directvion.

A\

All of the approximate expressions (4, 18, 22) use some
form of an isotropicity assumption. Darwin and Pecknold (22)
considered the conétitutive matrix at an angle 8 from the ma-
terial principal axes. If a transformation is mads using equa-
tion 2.11 then the c33 element of the transformed matrix is
Cqq = [E, - 2vJE{E, + Ez]czs2

2.13)
+ (l-vz)Giz(cz-sz)2 ( >

Now, if an assumption that c33 is constrained to be independent

of ¢ is made (G,, = G{z). then the following expression for
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G12 or Giz is obtained.

' - _ 1
G12 = GlZ = Zzz:;z; (El + EZ - ZVJEIEZ) | (2.14)

The expression for G12 as given by equation 2.14 is used in
this study. It must be noted that the expression for G12 as
given in equation 2.14% can also be obtained by considering a
value of @ = 45° in equation 2.13. Franklin (4) used this idea
of apparent isotropicity at kg0 angle vo arrive at equation
2.14 for the shear modulus.

It is also possible to form an approximate expression f

the shear modulus using the inverse form of the equation 2.9.

— - 1 ¥ — -
A€ = - 0 X2
1 Eq JE]_E2 1
1
A€l = |-_Y = 0
2 "E INE (2.15)
JElEZ 2 2
) e
Rewriting csguaticn 2.15 in matrix fom,
[a€'] = [aij] [ac'] (2.16)

where [aij] is the compliance matrix along the materiz:l av.-s.
The compliance matrix along the element axes can be calculated

using the transformation

- =T =
[aij] = T [a};]T (2.17)
where
c2 32 208 and ¢ = cos ©
T = 82 c -2cs s = sin © (2.18)
2 2
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and 6 is measured counterclockwise from the element reference
axes tc the material axes.

The a33 element in the transformed compliance matrix is

found to be
a = (-]—'— + 1 + 2v - al.) 40282 + al A (2.19)
33 E; E, 7E1E2 33 33

Now, if an assumption that the element a33 is constrained to
be independent of 6 is made, then the following expression

for a33 is obtained.

e

- 1 2\! ’
A,y = al, = = + = + 4 (2.20)

Liu (18) obtained the same expression for the shear modulus

using a different approach.

Summarizing, the constitutive matrix used in this study

along the material axes is

aal ] ' E, vWEE, 0 | [aeg |
Aoé = 13‘; v\lﬁliz E, 0 a€s j(2.21)
291 |0 0 %(El”Ez‘z"ﬁsz-L 2€15
and along the element axes is
2‘011 ~Elc2+E2s2 WEE,  3(E;-Ejles Ny —Aél—
ao, | = 1_1\) 5 E,s%+Eyc?  3(E;-E,)cs ae, (2.22)
A0y, | Symmetric %(E1+E2—2vJE?-._E;)J 2€ 1)
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Equivalent uniaxial curves and elastic tangent moduli in
compression

Material nonlinearity is introduced in the analysis by

considering the current values of the tangent moduli of
elasticity of the material in the formation of the stiffness
matrix of the structure. The off diagonal elements in the
constitutive matrix defined by equation 2.21 introduce

the Poisson's effect in the stress-strain relationships.
Therefore, the tangent modulus used in the formation of the
constitutive matrix must be devoid of any Poisson's effect.
One way of calculating such a tangent stiffness modulus is
through the concept of equivalent uniaxial strains suggested
by Darwin and Pecknold (22). This provides a convenient way
of separating the Poisson's effect from the total strains in
a nonlinear material and can be extended to include cyclic
loading.

al equivalent uniaxial strain is defined

by the equation
A€iu =5 (2.23)

where AEiu is the incremental equivalent uniaxial strain in
the ith direction,,go'i is the incremental stress in the ith
direction and Ei is the tangent modulus at the beginning of the
increment in the ith direction. The important point to be
noted in equation 2.23 is the omission of the effect of stress

acting in the perpendicular direction. Modeling the nonlinear
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material using an incremental linear approach allows equation
2.23 to be extended in order to calculate the total equiva-
lent uniaxial strain given by the equation

AC .

u a1 E;
increments

where €, is the total equivalent uniaxial strain in the ith
direction.

In a general analysis of a structure an increment in
principal stresses is also associated with a possible rotation

of the principal axes. Thus, Aeiu is then calculated as

9 ,new ~ %i o014

Aeiu = == T (2.25)
i
where cl new is the new principal stress in the new ith
direction, o i,01d is the old principal stress in the old 1th
’

direction at the beginning of the increment and E- is the

tangent modulus in the gld ith direction at the bveginning
of the increment. The incremental strain a€... is then added

iu
to 0ld total eiu to give the new total eiu oriented in the new
direction of the principal axes. Thus, in uncracked concrete,
El and E2 are tangent moduli always oriented along the princi-
pal stress directions 1 and 2 respectively.

The equivalent uniaxial strains are used to construct the
equivalent uniaxial curves. The equivalent uniaxial curves
are then used to calculate the tangent modulus of elasticity

and the stress for the material for a given €54+ Equivalent
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uniaxial curves are defined by the equation

E €.
5. = 0 iu (2.26)
2 E0 Giu €iu 2
1+ (-'E = 2) € + (6 )
ES ic ic

where EO is the initial tangent modulus, Eg is the secant
modulus at the point of maximum stress Oic and Gic is the
equivalent uniaxial strain at the point of maximum stress.
Since Oic andeic are different for different ratios of princi-
pal stresses (ac), a family of equivalent uniaxial curves
exist as shown in Fig. 5.

To construct the uniaxial curves it is necessary to know
the values of Eg,, gy and €, .. The value of the initial
tangent modulus can either be determined experimentally or the
value as suggested by the ACI Code (38) can be usged. The value
of the failure stress 0; o Can be obtained from the failure
ussed eariier. Tne value oI the €50 must oe
analytical biaxial siress-strain curves
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agree closely with the experimental results. Some of the
elegance of the method is lost in using a long expression for
eic obtained by interponlation from experimental results.

Darwin and Pecknold (22) proposed two expressions for Eic when
Oic 2 fé and when 050 < fé. This study uses the two expres-
sions suggested by Darwin and Pecknold for the biaxial compres-
sion region. For ti:e tension-compression region a different

method of constructing the equivalent uniaxial curve is
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preposed.

Biaxial compression region In this region there is an
increase in failure strength over the cylinder strength due to
microcrack confinement. For failure stresses greater than fé
in absolute magnitude, failure strains greater than the uniaxi-
al failure strain w2re observed in spite of Poisson's effect.
Darwin and Pecknold (22) use the experimental stress-strain

curve for equal biaxial compression to estimate ei when Oi0 <

c
fé . The value of eic for @, = 1 can be found by dividing the
experimental faiiure strain by (1 - v). The vaiue of €;, for

the uniaxial case is the experimentally observed ch.. Assuming
Eic varies linearly with the increased compressive strength the

following equation can be obtained.

G-
- ic _ _
€ic = €eul ?:— Rie = (Rie 1)] (2.27)
where € =~ = uniawvial failure strain and
€ic lac = 1)
€ -t
cu
R, = R (2.28)
ic o5, (e, =1)
T -1
c

The value of R;_, is to be calculated from experimental biaxial
test data. A value of Ric = 3.15 was used throughout this

study.

. >~“' » o . 3 3
When Gie 5 the value of jc 1S &lven by
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O. g. 0.
= icy3 ic,\2 ic
€0 = ecu[-l.é(fé )7 + 2.25(——f.c + 0.35(f,c)] (2.29)

In order to prevent the equivalent uniaxial curve (Eq. 2.26)

from becoming concave upward, €ic must have a minimum value

such that the rétio —g > 2.

Eg

Tension-compression region When the uniaxial curves

in the tension-compression region were constructed along the
lines suggested for the biaxial compression-compression region,
it was found that the theoretical model overestimated the
strains in the compressive stress direction for high negative
values of a,. This diificulty is due to the fact that the

E

ratio —g > 2 to prevent the stress-strain curve from becoming

Eg

concave upward. Hence, the equivalent uniaxial curves in the
tension-compression region are constructed differently from the
biaxial compression-compression region. After several trial
and errors, an expression for eic given by the following

equation gave good correlation with experimental results.
o J. g.
- ic icy2 _ ic\3
€. = € [b-42 - 8.38(fé ) + 7.54(fé ) 2.58(f(.: )] (2.30)

Equivaient uniaxial curves in this region are constructed using
the cylinder strength fé as the peak stress and using eic as
given by equation 2.30. The equivalent uniaxial curves are
then truncated corresponding to the failure stresses as shown

in Fig. 6. This procedure gave very satisfactory agreement

with the experimental results.
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Elagtic tangent modulus in tension

The response of concrete in tension is comparatively
linear. Therefore, the tangent modulus of concrete in ten-
sion is assumed to be constant until fracture occcurs and is

equal to the initial tangent modulus Ey.

Effective Poisson's ratio

The value of the effective Poisson's ratio was assumed
to be 0.2 for the entire load range in all the three regions
(compression-compression, tension-compression and tension-
tension). The experimentally observed Poisson's ratios vary
from 0.18 to 0.2 below the elastic limit (17). A study of the
experimental uniaxial curve (17) indicates that v increases
significantly when the stress level is greater than about 80
percent of the failure stress. Darwin and Pecknold proposed
a varying value of v for the unisxzial and tension-compression
region. In the expression they proposed, the value of v for
certain values of a, can vary from 0.2 to as high as 0.99.

In the analysis of siabs, numerical difficuities were en-
countered in using such high Poisson's ratios. Hence in this

study a constant value of v = 0.2 was used for the effective

Poisson's ratio. This resulted in the analytical stress-
strain curves deviating from the experimental curves on the

tension side in the tension-compression region at high stresses
(Fig. 10).
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Comparison of the analytical stress-strain curves with experi-
mental results

The analytical stress-strain curves for plain concrete
were compared with experimental results obtained by Kupfer
et al. (17). A comparison was made for three different ratios
of a, in éach of the tension-tension, tension-compression and
compression-compression regions as shown in Fig. 7 through

Fig. 10. The meodel gives good results in the cases

illustrated.
Modeling the Cracking of Concrete

An important characteristic of concrete is its cracking
behavior at low tensile stresses. The cracking of concrete is
a major factor contributing to the nonlinear behavior of re-
inforced concrete structures. Realistic theoretical analyses
consider the cracking of concrete even under service loads.
With reference to finite element idealization of a structure
two approaches to the modeling of the cracking of concrete
have been made in the past. The first approach separated the
nodes of the finite element mesh when the tensile stress
reached a critical value. This approach has been used by Ngo
and Scordelis (2) and Nilson (3). This method of modeling the
cracking of concrete has certain advantages. It can simulate
a single crack and can give an estimate of crack width. Possi-
bilities exist in this analysis to include the shear transfer

through aggregate interlock as a function of crack width and
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also to estimate the increase in stress in the vicinity of
the crack provided a sufficient number of elements near the
cracks have been used. The contribution of the uncracked con-
crete in between the cracks to the structural stiffness is
automatically included. However, this approach has some
serious disadvantages when implementing these assumptions

into a computer program. The separation of nodes results in
an increased number of nodes, an increased size of the system

equations and also would lead to increased bandwidth in the

accomplished. The above approach is difficult to implement in
an automated program that would analyze the structure from zero
to failure load in one continuous run. In addition, the path
of propagation of the cracks would be influenced by the finite
element mesh layout used.

The disadvantages of this method led to the modeling of
the cracking of concrete at the constitutive matrix level.
The modeling of cracking is simply achieved by assuming the
elastic tangent modulus of the concrete perpendicular to the
crack as zero and retaining the stiffness of concrete parailel
to the crack. Thus in thls second approach cracKing is notl
treated as a discontinuity with accompanying separatior of the
cracked surfaces, but rather, the cracked concrete is treated
as a continuous orthotropic material of widely varying stiff-
nesses in the two perpendicular directions. This latter

approach has been used in simulating cracked concrete in this
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study.

It is assumed that the cracking of concrete results when
the principal tensile stress exceeds the tensile strength given
by the failure criteria. For the case of concrete cracked
in a single direction, the constitutive matrix in the material
directions takes the following form where cracking has occurred

perpendicular to direction 1.

0 0 0
[_cij] =0 B, O (2.31)
Ex
0 I
L 4 |

It is important to note that the cracked concrete retains some
shear stiffness. Taylor's extensive tests (39) indicate that
an appreciable amount of shear is transferred along fhe cracked
surfaces through aggregate interlock. It is also well known
that shear is transferred across the cracked surface by dowel
action of the steel reinforcement. Retentvion of some shear
stiffness in the cracked concrete accounts approximately for
the shear transfer through aggregate interlock and the dowel
action of the steel reinforcement. Hand et al. (12) demonstrated
in certain classes of problems (e.g., the pure torsion of a re-
inforced concrete slab) that the retention of shearing stiff-
ness in the cracked concrete is a necessity to prevent unstable
crack configurations from forming well below the ultimate

load. Several studies (12, 14, 30, 32) have used arbitrary
shear stiffness retention factors in the constitutive matrix.

In the cases of concrete cracked in two directions, crushed in
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two directions, cracked in one direction and crushed in the
other direction the constitutive matrix reduces to a null
matrix.

When the elastic tangent modulus of cracked concrete is
assumed to be zero, there is a loss of stiffness over the area
of the element or a fraction of the area of the element de-
pending upon the integration scheme used. However, cracks
actually occur at finite distances and the concrete in between
the cracks contributes to the stiffness of the structure. In
reinforced concrete slabs, Lin (14) found that this stiffening
effect (called tension stiffening effect) could be significant.
The tension stiffening effect can be approximately accounted
for in the analysis by adding a hypothetical unloading portion
to the tensile stress-strain curve of the concrete until the

value of the tensile stress is zero at a chosen value of the

numerical difficulties. Lin (14) and Salem and Mohraz (32)
avoided the difficulty by using a stepwise reduction of the
tensile stress over ranges of strain. In the present study,

tension stiffening effects have not been incorporated.
Steel Reinforcement

In this study reinforcing bars are assumed to be perfectly
elastic-plastic. Furthermore, reinforcing bars are modeled as
uniaxial fibers distributed over the area of the element at

the level of the centreid of the steel reinforcement. The
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constitutive matrix for the steel reinforcement parallel to

the direction of the steel can be written as follows

E; O 0
[cij] steel = |© 0 0 (2.32)
0 0 0

where Es is the tangent elastic modulus of steel. When the
steel has yielded Es is assumed to be zero. In the numerical
computations the concrete at the level of the steel reinforce-
ment is treated as a composite layer. The bond-slip that
occurs between the steel reiniorcement and the concrete has

not been modeled in this study.
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CHAPTER 3. FINITE ELEMENT IDEALIZATION

General

The computer oriented finite element method has become
one of the most ppwerful tools in the analysis of structures.
It has unified the analysis of any arbitrary structure of any
geometric form to one basic fundamental procedure. 1In the
finite element method arbitrary geometry and support condi-
tions, arbitrary loadings and arbitrary variation of material
properties within the structure can be considered with ease.
Several books (40, 41, 42, 43, 44, L45) dealing exclusively
with the fundamentals of the finite element method and its
application to a wide class of problems have been published.
Consequently, the basic concepts of the method will only be

reviewed very briefly and the formulations that are of direct

-V e cnmam am dee hle e emema e de
re.evarCe v vie PIrESElv

Basic Concepts of the Finite Element Method

In a very simple sense the finite element method may be
congidered as an extension of the displacement method of
analysis of frames and trusses into a two or three dimensional
continuum. The structure is idealized as an assemblage of
separate elements interconnected at nodes. 1In
trusses and frames the finite elements are one dimensional
bars and/or beams. In two or three dimensional continuum the

finite elements are two or three dimensional finite elements
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of appropriate shapes. The type of element, the number of
elements and the arrangement of the elements can be selected
based on the accuracy needed and the available computer
capabilities.

In a more rigorous sense the finite element method is
considered to be a2 special case of Raleigh - Ritz method.
The variational formulation of the method provides a sound
mathematical foundation and extends the application of the
method to all problems where an application of variational
techniques is possibie. This more rigorous approach gives an
ingight into the development of necessary convergence criteria
and into the development of different possible finite element
models.

Regardless of the shape or the type of the finite element

the analysis is carried out using the same basic principles.

In the digplacement approach,; the digplacements within
element are assumed to be approximated by a function of the
nodal displacements following simple patterns, usually poly-
nomials. The assumed displacement functions can then be used
to derive the stiffness matrices for the eiements using the
principle of virtual work. The element stiffnesses are then
appropriately added to form the total stiffness matrix for

the structure. The resulting algebraic simultaneous equations
relating nodal forces to nodal displacements are then solved.
From the known nodal displacements, using the assumed displace-

ment functions, the displacements, strains, and stresses at
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any point within the element can be calculated.
Causes of Geometric Nonlinearity

With increasing loads all real structures eventually
behave in a nonlinear fashion. Nonlinear behavior results in
total stresses, strains and displacements not being directly
proportional to the applied load. The type of nonlinearity
can be classified as geometric nonlinearity and/or material
nonlinearity as they are due to two distinct phenomena.

Geometric noniinearity is ascribed to large-defliection
problems in which the deformed configuration muét be used to
write equilibrium equations, and to problems related to
structural stability. Material nonlinearity is due to non-
linear stress-strain relationshipns of the materials that make

up the structure. It is possible in an analysis to include

bined. In general it can be said that geometric nonlinear
effects are important in "slender” structures and material
nonlinear effects may be very dominant in "thick" structures.
For example, an accurate analysis of long columns can only be
obtained when geometric nonlinear effects are included in the
analysis. Analysis considering material nonlinearity alone
has given excellent agreement with the experimental results

for the case of reinforced concrete beams.
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Scope of the Geometric Nonlinear Effects Considered

Geometrically nonlinear problems can further be classi-
fied as highly nonlinear or moderately nonlinear. Some ex-
amples of the highly nonlinear problems are the inflatable
shells and the large stretching and bending of rubber-like
materials. In such cases strains are large compared to unity
and parts of the structure may undergo large rotations.
Further, the mass density and the volume of the material may
change considerably during deformation and also, the loads may
be a function of displacements. There is also another group
of problems in which the strains may still be small but
nevertheless in which large rotations could occur. For all
such problems, finite element formulations must be based on
consistent mathematical theories of finite elasticity (45, 46,
L7). A careful definition of stresses and strains is required.
The strains are defined either based upon the initial unde-
formed configuration {lLagrangian Strains) or defined based
upon the current deformed configuration {Eulerian Strains).

Corresponding to the above definitions of strains,
definitions of stresses also exist. The definition of stress
as force per unit area in the deformed state is the physical
concept of stress. Such a definition of stress is called
Eulerian Stress. The Lagrangian stress tensor and the
Kirchoff's stress tensor are definitions of stresses referred

to the original undeformed configuration (48). The Lagrangian
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stress tensor is generally not used in finite element formula-
tions due to its unsymmetric nature. Several investigators
have used the Kirchoff's stress tensor and the Lagrangian
strain tensor in the finite element formulation of finite
strain and finite displacement problems (47, 49, 50). The
product of the components of Lagrangiaﬁ strain with components
of Kirchoff's stress results in an equation which is equivalent
to the internal work.

Attention is now directed towards the type of problems
this study is attempting to solve. 1In reinforced concrete
structures the concrete strains are small compared to unity.
There exists an important class of problems in which the
geometric nonlinear effects are significant even though the
displacements are small. The problems involving structural
stability need not have actual deflections which are large in
any sense. In a plate proklem, the stresses due to membrane
action may cause a considerable decrease in the displacements
compared to those obtained from a linear solution even though
the displacements may still be quite small. Thus, part of
this study is directed towards problems in which the inclusion
of geometric nonlinear effect is critical even though the dis-
Placements need not necessarily be large.

In the finite element formulations which follow in this
chapter, it is assumed that the displacement gradients are
small compared to unity. A simplified form of the exact

strain-displacement relationship is used. However, the



L6

retention of certain nonlinear terms in the strain-displacement
relationship is critical to the analysis when the geometric
nonlinear effects are considered. As first order approxima-
tion no distinction between Kirchoff's stress and the Eulerian
stress is made. Such an approximation has been used by Berg
(23) and has also been suggested by Fung (48). A single
nomenclature Gy for the ith component of the stress and ei

for the ith component of strain is used.
Layering Technique

In the layered approach the finite element is divided
into a number of layers over the depth (Fig. 11). The number
of layers used must be sufficient to follow the variation of
material properties over the depth. Each concrete layer is
assumed to have a single set of elastic constants determined
he magnitude ¢f strains a2t the centroid of the element
evaluated at the midheight of the layer. Each layer is
assumed to be in a state of plane stress.

The concrete layer at the level of the .steel is treated
as a composite layer. Assuming the steel to be uniaxial
fibers distributed over the layer, the constitutive matrix for

steel parallel to the direction of reinforcement is

! = S
[cij steel ~ tj 0 0 0 (3.1)
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where As is the area of steel reinforcement per unit width,

tj is the thickness of the composite layer Jj, and Es is the
tangent modulus for steel. If the direction of the steel is
not along the element axes, then equation 3.1 is transformed
to the element axes using the transformation matrix given in
equation 2.11. The © in equation 2.12 will be the angle be-
tween the element x-axis and the direction of the reinforce-

ment. Thus, the constitutive matrix for the composite layer

in the element axes directions is given by

Co = o, 7 Fo
. » o = .« . + C. .
L® jlcomposite - LCijlconcrete T L%ijIsteel

(3.2)
Equation 3.2 is used when considering the contribution of
the composite layer in the calculation of the stiffness
matrices of the elements. It is possible to have more than
one composite layer and also, the possibility exists of having
steel reinforcement in more than one direction in a composite
ivre described avove to COvVer

those cases is straightforward.
Rectangular Element Displacement Functions

A rectangular element having membrane and bending stiff-
ness is used in this study (Fig. 11). With the use of
Kirchoff's thin plate assumptions, the finite element model
could be used to study beams, columns, thin slabs and thin
shells. The rectangular element has four nodes, one in each

corner. The unknown displacements in each node are the
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translational displacements u, v, and w in x, y, and 2
directions, respectively, and the two rotations of the node
about x and y axes. The assumed displacement functions for
the element are

U= 0+ GpX gy + O,y

v = aS + 0eX + &ny + 0gXy (3.3)

W= ag + agox + a4y + a12x2 T 05Xy + alhyz + a15x3

+ aléxzy + al?xy2 + a18y3 + a19x3y + azoxy3

where X and y are the local coordinates of the point inside
the elehent and the a's are the generalized displacements
parameters. The assumed displacement function for w is non-
conforming and hence mathematical convergence proofs cannot be
given. However, for the linear elastic cases and for practical
mesh sizes used this element compares favorably with other
possible elements (42).

This rectangular finite element described zbove has a
total of 20 nodal displacements. The nodes are located at the
midsurface corners of the element. The list of nodal dis-

placements at any node i is

r. = w (3.4)

w,
X

w,

Y1 node i

-

where the comma denotes partizl differentiation. A right

handed coordinate system is used and the positive directions
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of the displacements are shown in Fig. 12.

The nodal displacement vector for the element can then

be defined as

r = Ir, (3.5)

— -

where Tys Tpy r3, and r, are the values of the nodal displace-
ments at nodes 1, 2, 3, and 4, respectively, defined by
equation 3.4. ‘In the developments to follow, a relationship
between the generalized displacement parameters a and the nodal

displacements r is necessary. Using equations 3.3 and 3.4 and

writing in a matrix fomm,

r = Ca (3.6)
where matrix C is obtained by the appropriate substitution of
local nodal coordinates of the element. The matrix C is not

to be coniused witn the constitutive matrix [ci.] or the

-

J

elements of the constitutive matrix in indicial notation cij'
equ

o o~
Vil
-

1

3.6 is
a =C - r (3.7)
1

where C ~ can be obtained using an inversion subroutine in

the computer program or it can be obtained algebraically.

1

The matrix C™~ is solely a function of the element's dimensions

and in this study a direct algebraic inversion of matrix C was
performed. (The explicit expressions for the C"l matrix are

given in the Appendix.)



Fig. 12,

ry

Element rodal numbering system, element local coordinate system, and
the positive direction of nodal displacements
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Strain Displacement Relationships

Kirchoff's thin plate assumptions reduce the plate
problem to a two dimensional problem and, therefore, it is
necessary to consider only the strains in the plane of the
plate. The components of strain in the lagrangian form can be
written as

€, = U, + %[:(u,x)2 + (v,x)2 + (w,x)zj

€y = vy + (W )%+ (v )+ (W, )P (3.8)

y ¥ Vgt [u,x Ty Vg cVag ot Wy oo w,y]

It canbe seen that the above finite strain-displacement rela-
tionships involve linear and quadratic terms. It should also
be noted that the above expressions are exact and not merely a
second order approximation. As stated previously when dis-
cussing the scope of the geometric nonlinear effects accounted
for in this study. considerable simpiification in the detaiis
of the finite element formulation can be made by omitting
certain quadratic terms from the exact expressions given in
equation 3.8. In a simplified form, certain powers of w,
and w,y are only retained in the strain-displacement rela-

tionships. The simplified form is given by

- 1 2
EX - u’x + 2(w7x)
2
E = ; + i .
g = Vay+ Blwg) (3.9)
Exy = Uiy v, + (w,x °w,y)
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The simplified strain-displacement relationships given in
equation 3.9 are the same that are used in von Karman's large
deflection theory of plates.

The strains at a point a distance z from the midsurface

can be written as

2
— . 1
Ex - u’x -z w’xx + Z(W'x)
2
€ = , - . . 1 ) 1o
y v y T2 Wiy + S(w y) (3.10)
Exy = u’y + V,x - 2 . A w'xy + (w’x R w'y)
where w = i.zl".. w = azw W - azw
’xx axz, 'yy ayz' ,xy ——axay

The above expression for strain can conveniently be expressed

as a linear and a nonlinear part

_ L NL
where 1 = 1,2,3 defining éx' Ey and Exy respectively. Expres-

sions for strains given in equation 3.10 can be rewritten in
indical notation containing linear and nonlinear parts as

fecllows.

€. = Irad + £3g*H=.a (3,12)
\1 Llu. 2u u.lu. \3 4-2/
in which Li = a vector, Hi = a symmetric matrix, and d = a

vector of displacement gradients. The matrices L;, H; and d

are defined as follows.

L1=[1 00 00 0 -z 0 0]

L;=(0 001 00 0 -z 0] (3.13)
tt=[0 1 100 0 0 0 -27]

3
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al = [usy Usy Vg Vg Wiy W,

x Vry Wox Woy Wy ] (3.1%)

W,yy W,xy

Hl, H, and H3 are symmetric matrices of size 9 x 9 in which
all the elements are zero excedt those defined below which
have a value of unity

Hl(5,5) =1, H2(6,6) =1, H3(5,6) =1, H3(6,5) =1

(3.15)

The form and the nomenclature used in equation 3.12 is the
same as that introduced by Rajasekaran and Murray (51).
When linear strain-displacement relationships are desired, the

second term in equation 3.12 is dropped.
Incremental Tangent Stiffness Matrices

A fundamental property of the finite element models is
that a typical element can be isolated from the total struc-
ture and its behavior can be studied independently. The
process of commecting the elements fto form the total structure
is a topological one and is independent of the linearity or
the nonlinearity of the problem at hand. In this chapter
discussion is confined to a single element in the formulation
of the tangent stiffness matrix. The tangent stiffness matrix
for the total structure can be obtained by applying well docu-
mented procedures for appropriately assembling the element
stiffness matrices (40).

A matrix D relating displacement gradient vector 4 to the

generalized displacement parameters a is defined as follows
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d = Da (3.16)
The explicit form of the D matrix for the assumed displacement
functions is given in the Appendix. Using the equation 3.7,
equation 3.16 can be rewritten in terms of nodal displace-
ments as follows

d = 0c"tr (3.17)
In equation 3.17 the displacement gradients at a point within
the element are expressed in terms of the element nodal dis-
placements through transformation matrices D and C-l. Using
the equation 3.17, the strain-dispiacement relationship in
equation 3.12 can be rewritten as

r . -1T 1

ictr + 4r¢™t DTH, D6 r (3.18)

Thus, equation 3.18 relates the strain at any point within the
element at a distance z from the middle surface to the mid-

surface nodal displacements.

N -_e - M ad

Ty 4+
- va

44

D
[9)
3

small virtual nodal displacements, a corresponding virtual
strain distribution inside the element is required. Using
equation 3.18 we cbtain,

b€y = [LIDC™T + rmc-lTDTHiDC-l] 5t (3.19)
where 8 represents virtual quantities. 1In arriving at equa-
tion 3.19 the symmetric property of the second term in equa-

tion 3.18 was used. The dependence of 6€i on the current dis-

placement configuration r is to be noted.

In a general case the structure is subjected to inertia
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forces, body forces and surface distributed forces. Since
this study deals with static loads only, the inertia forces
will not be considered in the equilibrium equations. The

body forces and the surface tractions can be converted into
equivalent nodal loads by simple statics or by procedures
consistent with the assumed displacement functions. Combining
the nodal load vector P and the principle of virtual work, the
following work equation can be written

SrT P = [8€. g. Av (3.20)
\'d 1 1

where the summation convention over the repeated index is
implied. Transposing the expression for aei given in equation

3.19, equation 3.20 is rewritten as

7 T
srt P= for[CTH DL, + ¢TUDTH.DCTIr] oy ¢ av (3.21)
v

The fact that the virtual displacement 6rT is arbitrary leads

¢ the eguilibrium eguaticn
-T T
P=J[cTt DL, + ¢l DTH,DC7ME] o) - av (3.22)
N

With reference to the use of Gs instead of Kirchoff's stress
in equation 3.22 attention is drawn to the earlier discussion
in this chapter regarding the scope of geometric nonlinear
effects to be considered.

The nonlinear analysis of the structure is carried out by
applying the loads in small increments. Therefore, in the

process of analysis, relationships between incremental loads
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and incremental displacements, between incremental displace-~
ments and incremental strains, and between incremental strains
and incremental stresses are required. Using the total strain-
displacement relationships in the displacement configuration 1
and in the displacement configuration 2 as given by equ‘ticn
3.12 the incremental strain quantitites are obtained as follows.

_ 17

1.7 T

ad + TdTH; Ad + AdTH; ad (3.23)

where the symbol A implies the incremental quantities and 1dT

is the total displacement gradient vector at the displacement
configuration 1. It should be noted that the incremental
strains are related nonlinearly to the incremental displace-
ments.

Exact expressions for the incremental strains as given by
equation 3.23 when used in developing the stiffness matrices
would result in a set of nonlinear equations relating the in-
cremental loads to the incremental displacements. In this
study the nonlinear problem is solved using the tangent stiff-
ness approach. Hence, it is suifficient to form a iinearized
form of the equations relating the incremental loads to the
incremental displacements and iterate until equilibrium is
achieved. Rewriting equation 3.23 in terms of nodal displace-

ments in a linearized form we get

0y
-1 - Y -
ae. = [Bioc™t + 1T ¢ pTy, pe1) ar (3.24)

i i
where er is the total nodal displacement vector at the start

of the increment.
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Writing the equilibrium equation in an incremental form

we obtain
1T ¢ AT 1
AP = [a[CTF DL, + C77 DTH,DC r]di-dv +
v . (3.25)
T - -
S oL, + ¢t pfH.pet Lrdac: cav
v 1 1 1
or
L T |
AP = JC D HiDC Ar'ci-dv +
v (3.26)

7 T
%[c’l 'L, + ¢™F DTH,Dc"! r] ac;-av

Idealizing the material to be incrementally linearly
elastic a relationship between the incremental stresses and

the incremental strains is obtained.

a0; = cij AGj (3.27)

where the cij are the coefficients of the constitutive matrix
developed in Chapter 2. Substituting equation 3.27 into
equation 3.26 we get,
T
AP = et DTHiDc'l Ar+Gy AV +
v (3.28)
1T

T
Jre™t oL, + e otr et ] .o, a€5av
v

i ij
The first term under the integral sign yields the initial
stress matrix and is defined by
K = J‘C'lTDTH ¢ Lo, cav (3.29)
a7y i i 3.
Rewriting equation 3.28 with the definition of K, and using

equation 3.24 we get
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T T )
AP = [k + f(¢7V DL, + ¢ ptayne™ Trjey

v T (3.30)
(I%DC-l + 1Tt DTHjDC-l)]‘ar-dv

Expanding the terms in equation 3.30 and regrouping

C

T
- - -1 T Tyoo-1

T
1.7 .-1".T -1
i34 r - C D HjDC dv

-11

JJC = D¢c..L
\'
-7 o
+ JC D HiDC r (c:.L.)DC ~-dv
\'
; AT -11 1o T m -1 -
+VC DH.lDC rcij rC D HjDC . dv] Aar
Using the nomenclature commonly found in literature the
various terms under the integral signs are identified separate-
ly. The basic small displacement stiffness matrix is given by

the second term of equation 3.31 or

-3
)
-3

- - - ) - -"\—.-."1. -
Ky = %b D™ (e 3L L3)D07 - av

€t
~~
W
Lo
[AV]
)

The rest of the terms under the integral sign can be written as

Ky = Ky + K{ + K, (3.33)

where K, is the initial displacement matrix. The matrices

Kl and K2 are defined as follows

K

T P
1 £0‘1 DTcijLi 1,7 -1 DTHch'l-dv (3.34)

1T T

K, = Jc™1 D Hinc‘l 1., W ¢ 1 pTly.pctleay (3.35)
v ij j
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In summary the relation between the incremental loads

and the incremental displacements is given by

AP = KT + AT (3.36)

where KT is the tangent stiffness matrix. The tangent stiff-
ness matrix can be considered to be composed of three parts

as given by the following equation (3.37)

Kp = Ky + K + Kp (3.37)
The form of the tangent stiffness matrix KT is the same that
was obtained by Felippa {(52).

Ko is the basic small displacement stiffness matrix and
is a function of the material properties that exist at the
start of the increment. Kc is the initial stress matrix and
is a function of the total stresses that are present at the
start of the increment. KG in conjunction with K, can be used
to solve linear eigenvalue buckling problems. Ky is the
initial displacement matrix and is a function of the total
nodal displacements and the material properties at the start
of the increment. The initial displacement matrix is of the
same order as the initial stress matrix and must be included
in geometric nonlinear problems using a total Lagrangian
formulation. For a nonlinear analysis considering material
nonlinearity alone, the matrices KG and KD are not formed.
Finally, the summation convention in the indical notations

used in the expressions for the stiffness matrix is implied.
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Integration of the Stiffness Matrices

It can be seen from the expressions for the tangent
stiffness matrix, that an explicit form of the stiffness
matrix can only be obtained by performing the integrations
over the volume. In the incremental procedure, the stiffness
matrices are usually evaluated at the start of each incremental
load step. In addition, the stiffness matrices may have to be
updated in the midst of iterations if significant nonlinearity
is encountered. Extensive cracking of concrete frequently re-
sults in slow convergence and more than one update between the
increments is not unusual. The numerical evaluation of the
stiffness matrices Ko, Kc and KD is a major time consuming
operation in the numerical solution.

Refined higher order elements contain higher order dis-
placement functions. Higher order displacement functions re-
ge numver of nigher order terms inside the inte-
gral sign in the expressions for the stiffness matrices.

Higher order stiffness matrices Ko and KD rtain high
powers of x and y than the basic stiffness matrix KO and an
exact albegraic integration of the expressions is exceedingly
tedious if not impossible. Hence, most researchers have used
some form of numerical integration to evaluate the stiffness
matrices. MNost of the works in published literature use

Gaussian quadrature formulae., Sabir and Lock (53) used four

integration points for the same rectangular finite element.



62

Numerical integration schemes are time consuming and

require storage of a number of quantities like material
constants, stress and strain quantities at every integration
point. In this study, algebraic integrations are performed
to obtain Ko, KG and KD after making some simplifying

assumptions.

An exact algebraic integration of the equation 3.32 is
performed to obtain the basic stiffness matrix Koo The initial
stress matrix KG and the initial displacement matrix KD are
cbtained using algebraic integration after certzin simplifying
assumptions are made. In evaluating KO, the stress resultants
No» Ny and ny at the centroid of the element are first
evaluated. It is then assumed that Ny » Ny and ny are constant
over the entire element when integration over the area is per-
formed. Similar approximations have previously been used by
Gallagher et al. (54) for the same finite element model. A
study of the initial displacement matrix expressions in equa-
tion 3.34 and 3.35 reveal that the quantities of interest in
the total displacement gradient vector are the quantities
wW,., and w,... In the integration process used, w,_ and w,_at

X y X y

assumed that w,_ and w,_ are constants while an integration

X y
over the area is performed. Such a procedure gave satisfactory
results and the results are compared later in Chapter 5 with
tangent stiffness matrices obtained using numerical integra-

tion. It must also be noted that if a total equilibrium check
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is made at frequent intervals in the analysis, an exact
evaluation of the tangent stiffness matrix is not a necessity.

The explicit forms of the stiffness matrix are lengthy and
are relegated to the Appendix. To illustrate the integration
procedure using layered discretization, the evaluation of the
basic stiffness matrix Ko is explained below in some detail.
Additional details of the formulation of K, K; and K, can be
found in the Appendix.

The basic stiffness matrix is defined by the following

equation

T
- ra=l7AT Tyrn-1

The matrix C'l

is a function of element dimensions a and b only
(Appendix) and can be taken out of the integral sign. The
matrix D is a function of x and y only and the matrix Li is a
function of z only. Taking the matrix ¢ outside the integral
sign and splitting the integral over the volume as an integral

over the area and an integral over the depth, we get

T T T -1
Kg=C " [J DS (cijLiLj)dz)D-dA]C (3.39)
Area z '
Considering the innermost inmtegral and defining a matrix 20*
- T .

A
The integration over the depth is replaced by integration over

the individual layers and a discrete summation over all layers.
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h.
_ J+1 Ty .,
layers J

where hj and hj+l are the near end and far end layer distances
from the middle surface (Fig. 1l1). Keeping in mind the sum-
mation convention implied in the indical notation, equation

3.41 can be rewritten in an expanded form

h.
_ §+1 0 7 T
Roox9 W2 T lenIqly + egplyTy * og3ly Ty
layers J
m
+ 0oy LoLE + cppL,IT + CZBLZI% (3.42)

T T T
+ CBlLBLl + c32L3L2 + 033L3L3) « dz

An explicit form of the ﬁo matrix defined by equation 3.42 is
given in Table 4 in Appendix. The material constants cij
are different for each layer and the final values of each
element in the’ﬁo matrix is obtained by a summation of all
layers. Some of the important characteristics of the Ko matrix
deserve attention. First, the %O matrix is symmetric. For

a nonhomogenous slab, coupling between the inplane and out of
plane displacements exists at the basic linear stiffness matrix
level. This can be detected by observing the terms in the
upper right hand corner and lower left hand corner of the ﬁo
matrix (Table 4, Appendix), which will only vanish if verti-
cal symmetry exists relative to the midsurface. The matrix Ko

is then obtained by
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T
Ky = V[ S D'ReD - aa] ¢ (3.43)
Area

The explicit form of the integral is given in Appendix. The

-1T

pre and post multiplications by C and C_l respectively were

done when the numerical calculations were performed in the

computer.

Evaluation of Layer Stresses and Element Stress Resultants

In the incremental procedure, the incremental strains
rnieed to be calcula
When geometric nonlinear effects are included the incremental
strains are dependent upon the incremental displacements and
the total displacements at the start of the increment (equa-
tion 3.23). Incremental strains can correctly be calculated
by considering the total strains at the displacement configura-
tions at the start and at the end of the increment. The in-

cremental strains are given by

ac, = %e, - e, (3.44)

where Zéi is the total strain at the end of the increment and
e. (equation 3.18) is the %otal strain at the start of the
increment. In the numerical calculation equations 3.17 and
3.12 are used to calculate ei. When material nonlinearity

alone is considered, the quadratic second term in equation

3.12 is omitted.

The incremental layer stresses are calculated from the
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incremental layer strains using the constitutive matrix of the

layer
ac; = C. . * A€, (3.45)

It is important to note that the values of Cij used in equa-
tion 3.45 are those that were used in the generation of the
stiffness matrices of the element. When composite layers are
encountered, the real incremental stresses in the concrete and
steel are calculated separately using the material constants
of each material separately. The total stresses in the layers
are obtained by direct addition of the incremental quantities
to the previous totals.

Total element stress resultants are calculated from the

known total layer stresses. The stress resultants Nx’ N, and

N/
ny and Mx, My and Mxy are given by

N" B Taxraqux ) t:l Mx - z GX ) tJ ) hm]

N = z - t. I = I . . .

¥ Sy * Y3 By Oy * Ty + Dy

(3.46)
N...= Z o._..° t- M . =2 0o_,+t., « hm;
Y X ! XY Xy J J

where tj is the thickness of the layer J and hmj is the dis-
tance from the middle surface to the midpoint of layer j

(Fig. 11). It is assumed in the expressions that the stresses
are constant over the thickness of a layer. When composite

layers are encountered equivalent steel stresses distributed

over the thickness of the composite layer and the real concrete
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stresses in the composite layer are used in evaluating the
stress resultants. In the numerical procedure used, stresses

and stress resultants at the centroids were calculated for

each element.
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CHAPTER 4. NUMERICAL SOLUTION OF THE NONLINEAR PROBIEM
General

Linear structural analysis assumes linear strain-
displacement relationships and linear stress-strain laws.
In linear structural analysis with any arbitrary loading, the
displacements and stresses are unique and can be found in a
single operaticn. However, the use of nonlinear relationships
lead to a set of nonlinear equations. Exact solutions to a
set of general noniinear equations are difficuit to obtain.
Thus, quantitative solutions to the nonlinear problems are
obtained by using numerical techniques and by using the com-
putihg power of modern high speed digital computers. In
addition, incremental procedures have to be used in many

practical cases, due to the fact that the final solution may

AvanmAan

h dependent. As an example,
of elements may have a significant effect on the internal re-
distribution of stresses. Due to the path dependent nature
of the problems encountered in this study, only procedures

using incremental techniques will be reviewed.
Available Solution Technigues

An explanation of the various solution schemes employed
to solve nonlinear structural problems incrementally will point
out parallels with the various numerical procedures used for

the sclution of differential equations. Incremental nonlinear
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analysis procedures can be explained as a series of linear
solutions with corrections to these linear solutions deter-
mined from the inclusion of the nonlinear effects.

For the purpose of explanation, consider simple one
degree of freedom load-deflection and stress-strain diagrams
as shown in Fig. 13. It must be emphasized that Fig. 13 repre-
sents a highly simplified form of what actually happens in a
multidimensional space. Let the curved lines in Fig. 13 repre-
sent the true response of the structure and the material.

The simplest approach to the solution of a nonlinear
problem is the use of a pure incremental approach with no
corrections (Fig. 13a). loads are applied in small increments
and the structure is assumed to behave linearly within each
increment based on their initial values at the start of the
increment. For an increment of load, the corresponding linear
increase in the stresses and the straing are represented in
the stress-strain diagram. It is obvious that the lineariza-
tion errors accumulate as the analysis proceeds. Hence, the
size of the increment must necessarily be small. If the non-
linearities are small, the above procedure would give very
satisfactory results with the least number of required numeri-
cal calculations. However, it must be noted that at no point
does the calculated load-deflection diagram and the stress-
strain diagram lie on the true curve. Various improvements
to the solution procedure can be made by considering the state

of the structure beth at the start and 2t the end of the
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Fig., 13. Numerical techniques for the solution of nonlinear
problems
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Fig. 13. (Continued)
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increment. In one such method, instead of using the values
at the start of the increment, material stiffness and tangent
stiffness matrices at the middle of the increment can be

used to give a better estimate of deflections and stresses
for the current increment. Such improvements give answers
closer to the true curve at the expense of more numerical
calculations.

The next‘group of numerical techniques can conveniently
be classified as residual load correction methods. In all
these methods, loads are increased in small increments and
iterations within each increment are performed until equili-
brium and material properties are simultaneously satisfied.

In its simplest form, the method employs at least one correc-
tion for each increment. In the numerical procedure the loads
are applied in increments and the corresponding incremental
and total gquantities of stress and strain are then calculated.
Due to linearization errors material properties will not be
satisfied exactly and when geometric nonlinearities are in-
cluded in the analysis, equilibrium based on the current de-
formed configuration will also not be satisfied exactly. Cor-
rective steps are then taken in the form of so-calied itera-
tions. For the computed total strain, the actual stress

level that the material can sustain in conformity with the
true stress-strain diagram is calculated. Using the cor-
rected stress level and the equilibrium equations based on the

current deformed geometry, the equivalent equilibrating nodal
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loads are then calculated. The residual load vector is then
defined as the difference between the total applied load
vector and the equilibrating nodal load vector. In the one
step correction procedure (Fig. 13b) the residual load vector
is added to the next incremental load vector and the analysis
proceeds in a similar manner. The disadvantage of this par-
ticular method is the lack of close control over the incre-
mental quantities, due to the presence of residual loads from
the previous increment which regardless of their magnitude
are added to the current incremental load vector.

An improved version of this method is to do several cor-
rective iterations within each increment and reduce the
residuals to as small a value as possible before a new incre-
ment of load is appiied on the structure. Two versions of the
numerical procedure, the basic Newton-Raphson method and the
modified Newton Raphson method are widely used. The two
methods are figuratively explained in Fig. 13¢ and Fig. 134
where the slope of the incremental stiffness values should
be carefully noted. The choice of any one of these methods

depends upon its computational efficiency when applied to the

TAam 11MAa™»™ AANaa 3
lem ungder consideration.

In the basic Newton-Raphson procedure the most current
information available concerning the structure is used to
calculate the incremental quantities at any step. In other
words, the material stiffness and tangent stiffness matrices

at the start of each iteration are used to estimate the next



74

incremental quantities. It means the generation of element
stiffness matrices, assembly of element stiffness matrices
and decomposition of the global stiffness matrix at the start
of each iteration. When the number of elements and the number
of unknown displacements are large in the structure, the above
step could lead to significant amounts of computer time re-
quired for a solution.

An analysis of the numerical procedure would indicate
that it is not absolutely necessary to use the exact tangent
stiffness matrix o estimave the incremental quantities as long
as a correct residual load vector is calculated based on the
true curve. The modified Newton-Raphson method is based on
this concept (Fig. 13d). Incremental quantities during the
iterations are estimated by using the same stiffness matrix
developed at the start of the increment. Thus, this method
has the obvious advantage of reducing the number of times the
formation, assembly and decomposition operations that are re-
quired on the stiffness matrix. The modified Newton-Raphson
method, in general, takes more iterations to converge than the
basic Newton-Raphson method. However, in many practical prob-
iems, the modified Newton-Raphson method takes less total
computer time for execution because the same reduced stiffness
matrix is used again and again in the iterations within an
increment. When the degree of nonlinearity is large at a
particular incremenf, as in the case of extensive cracking of

the concrete, it is advantageous to update the stiffness matrix
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after several iterations in order to accelerate the conver-
gence. The number of iterations after which the stiffness
matrix must be updated will depend upon the degree of non-
linearity present, the path dependent nature of the problem
and the relative time expended in the stress calculation ard
back substitution routines as compared to the time expended
for the stiffness generation, assembly and decomposition
routines. In this study depending upon the numerical example
considered, the stiffness matrix was updated after five to

ten iterations.
Discussion of the Calculation of Residual Loads

The calculation of the residual loads is an important
step in the iterative solution of a nonlinear problem and
hence it will be discussed in detail in this section. Since
an exact integration of the expression for the residual load
vector is difficult to perform, several approximate procedures
have been used in the past. Attention is directed in this
section on a single element.

A consistent numerical algorithm based on Lagrangian
formulation would involve the following steps in caiculiating
the residual load vector.

1. The residual load vector from the previous increment
ZXRO is added to the current increment of load and
the net incremental load vector AP is obtained. Ilet
the current total load vector be P.
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Incremental displacements are calculated using the
incremental relation

AT = K;
where Ar is a vector of incremental displacements
and KT is the tangent stiffness matrix of the struc-
ture at the start of the increment. The notation
K&l is used only symbolically and in practice only a
triangularization of the stiffness matrix with back-
substitution is used instead of a full inversion.

1.ap (4.1)

Current total displacements are obtained by adding
the incremental displacements to the previous total
displacements.

Incremental strains are calculated from the incre-
mental strain-displacement relationships (equation
3.44) and the incremental stresses are calculated

from the incremental stress-strain relations.

The current total stress and strain quantities are

calculated by adding the incremental quantities to
the total quantities.

Based on the current total strains, the true total
stress o5 is calculated from the stress-strain curves.
The estimated total

iated total stress guantities are replaced

by the corrected total stress quantities.

Using the corrected stress components N and the
current total dispiacement vector r, the correspond-
ing equilibrating nodal loads are calculated by the
relation

T T

R=Jlc 0, + ¢t oMHoer] o, - av (&.2)
v i i i

When geometric nonlinear effects are to be omitted,

the second term in equation 4.2 containing the
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current total displacement vector is omitted. Thus,
for the case of material nonlinearity alone, equa-
tion 4.2 reduces to the following equation

T
R = J’C-l DTLiUi + dv (4.3)
v

8. The residual load vector AR, is then given by the
relation
AR =P - R (4.4)
9. If oar and AR satisfy convergence criteria, the next

increment of load is applied and the analysis pro-
ceeds from step 1.

NN
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will continue and the next incremental displacements
are calculated by

ar = Kilsz (4.5)

11. Using the incremental displacements from step 10 the
analysis proceeds again from step 3 until conver-
gence criteria are met.
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the residual loads, it can be seen that the critical step is
the evaluation of equation 4.2 (or equation 4.3). An exact
integration of equatioh 4,2 (or 4.3) is difficult when the
stress components G; are functions of local coordinates of
the element. 1In practice an exact evaluation of those equa-
tions is seldom carried out except possibly in the case of
constant stress elements. The most commonly used approach is

the numerical integration of equation 4.2 (or equation 4.3)

to obtain the value of the equilibrating nodal loads. Berg
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(23) used such an approach in the nonlinear analysis of rein-
forced concrete plates. The number of integration points over
the area and the depth must be sufficient to represent the
stress distribution adequately but at the same time does not
require the expending of excessive computational time. For a
rectangular element using a layered approach an approximate
numerical integration can be performed by using a four point
or nine point Gaussian quadrature integration over the area.
However, its numerical integration would require additional
storage and computer time.

Considering material nonlinearity alone, Lin (14) and Hand
et al. (12) used a simplified procedure to calculate the residual

loads. Rewriting equation 4.3 for the layered analysis we get

T h.
R=cU 0t (2 fIlL o dz) - aa (4.6)
Area A1l h.
layers J

Lin (14) calculated the estimated total stress and the cor-
rected total stresses at the centroid of the layers and defined
the difference between them as excess stresses for the layer.
The excess stresses are assumed to be constant over the entire
layer while integrations are performed to obtain the excess
residual load vector. The residual load vector (an approxi-

mation of equation 4.4) is defined by

AR = C—lTJ" DY ( T i1 ex
B Area All g, Li °1 dz ) ar (%.7)
layers J
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where ch are the excess stress components in layer j. Re-
writing equation 4.7 in an expanded form for the range of

index i and using the definition of Li given in equation 3.13

we get, — _
ottt
ex
015 ¥
ex
o1
-lT T ex
AR = C J D = g, tj dA (4.8)
Area All
layers
‘ 2 2
hY, .-h"
_Gix jitl |
2
2 . 2
h: .-h-.
_ng X
2
ex .2 2
“O12 P317hj

where oix, ch, cig are the excess stress components. Hand

et 2l. (12) preferred to calculate the integrated average
strains for each layer instead of calculating the strains at
the centroid of the layers. The exact location of the strains
and stresses thus calculated are unknown but they give a repre-
sentative set of average strains and stresses for each layer.
The simplifying assumptions of Lin (14) and Hand4et al.
(12) make the numerical calculations comparatively easy and
there are fewer quantities to be stored in the computer memory.

Lin and Hand obtained very satisfactory results using this
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simplified procedure. However, it must be noted that the use
of simplified procedure affects the manner in which the excess

stresses are distributed in the structure.

Procedure Used for the Calculation of Residual Loads

When combined material and geometric nonlinearity is con-
sidered two distinct contributions to the magnitude of re-
sidual loads occur. The first is due to the loss of material
stiffness and the second is due to change in structure geome-
try. As already explained a consistent procedure for calculat-
ing the residual loads must use the corrected stress compo-
nents Gi and the current total displacement vector r (steps
7 and 8 of the previous section).

This study uses a simplified procedure for the calcula-
tion of residual loads. In the procedure used the estimated
‘stresses and the actual stresses at the centroid of the layers
are calculated first. The excess stresses are defined by

ex _ _est
oy" =050 -0y (4.9)

where ng are the excess stresses, GESt are the stresses
calculated using the current constitutive relationships for
the increment used in the generation of the stiffness matrices
and G; are the actual stresses. When the material ncnlinearity
alone is considered the residual loads are given by
T
-1 .
AR=ct p ool (= ?JH'L.
Area All h 1
layers J

cfx dz) - da (4.10)
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When combined material and geometric nonlinearity is con-

sidered the residual loads are given by

T h.
AR=ct § P (2 JPFT L of¥an) - aa
Area A1l hj
layers (4.11)
T h. -
sl (5 7w % az) D oaa - cTir
Area All h.
layers J

where r is the total displacement vector at the end of each
iteration. Thus, for the case of combined material and geo-

metric noniinearity the residual loads cazlculated are not

w

exact and equilibrium in the deformed state is not exactly
satisfied. The geometric nonlinear effects are considered by
using the tangent stiffness matrix containing KO’ Kc’ and KD
and then converting the excess stresses due to material
softening into equivalent nodal loads using the current

conmatrr. Thiac annrn
geomeT . fnig aphro

ry ¥ximate procedure has the advantage of only

one stress calculation per layer and also that the number of
quantities to be stored in computer memory is reduced. This
simplified procedure gave very satisfactory results for the

beam-column examples considered in this study.
Assembly and Sclution of Linear Simultaneous Equations

In the solution process, stiffness matrices for each
element are first generated. When material nonlinearity alone
is considered, only the basic stiffness matrix KO using the

current material properties is generated. When geometric
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nonlinearity is included, the basic stiffness matrix KO' the
initial stress matrix Kg, and the initial displacement matrix
KD for each element are generated and added at element level.
The element tangent stiffness matrices which are symmetric in
nature are assembled to form the global stiffness matrix.
Boundary conditions are introduced in the global stiffness
matrix by altering the elements in the rows and columns cor-
responding to the restrained degrees of freedom. The diagonal
elements are made equal to unity and the other elements in the
particular rows and columns are made equal to zero. The
corresponding elements in the particular rows of the load
vector are also made equal to zero. The symmetric and the
banded nature of the global stiffness matrix is used during
assemblage. The assembled global stiffness matrix is of
rectangular form in which the diagohal elements and the other
off diagonal elements within the lower semi-bandwidth alone
are stored.

The solution for the incremental displacements is achieved

by solving equations of the form

AP = Kp + or (4.12)
where AP is the vector of incrementzal loads or a vector of
residual loads as the case may be. The solution is obtained
using Gaussian elimination procedure. The double precision

version of the IMSL routines (55) LUDAPR and LUELPB available

at the Iowa State University Computation Center were used for
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the decomposition of the stiffness matrix and for the back-
substitution step respectively. For the size and type of
numerical examples considered in this study round-off error

difficulties were not encountered.
Convergence Criteria

In the adaptation of the modified Newton-Raphson method,
specification of certain convergence criteria is necessary
for the termination of iterations for an increment of load.
The two quantities that can be checked for the convergence cf
the solution are the residual loads and the incremental dis-
placements. During the course of this study it was found de-
sirable to satisfy both the residual load convergence criteria
and the incremental displacement convergence criteria before
the iterations were terminated.

For the tase of displacements, the ratios of incremental
displacements to total displacements are calculated for all
the nodal displacements. When the maximum value of the cal-
culated ratios is less than a specified amount (usually 1%)
the solution is assumed to satisfy the convergence criteria
for displacemenis. The ccnvergence criteria for dispiacements
can be written as
Ari

Ty

= a specified amount (4.13)
i=l’N

where N is the total number of unknown displacements.
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The convergence criteria for residual loads is satis-
fied when the absolute magnitude of all of the residual loads
is less than a specified amount, the specific value depending
upon the numerical example under consideration. The conver-

gence criteria for the residual loads can be written as
‘ZSR-i < a specified amount (4.14)
1.
i=1,N
where N is the order of the residual load vector.

Step by Step Outline of the Computations Procedure

This section outlines the principal computational steps
in the numerical solution. The following steps are done for a

typical increment.

1. At the start of an increment add the residual load
vector from the previous increment o the applied
incremental load vector.

™

~ . e e A s T - ¥ U T T . P
Generate the tangent stviifrniess matrices for each

element and assemble the global tangent stiffness
matrix for the structure.

3. Introduce the boundary conditions and decompose the
global stiffness matrix.

L., Calculate the incremental displacements and update
the total displacement vector.

5. Separate element incremental and total displacement
vectors from global displacement vectors. Calculate
the incremental and total displacement gradient
vectcocrs 4 for the centroid of the element.
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Do steps 6 through 11 for all layers.

6. Calculate the incremental layer strains from the
known displacement gradient vectors.

7. Using the constitutive matrix of the layer used in
the generation of systems equations, calculate the

increments in stresses corresponding to the incre-
mental strains.

8. TUpdate the total stress and strain quantities. Cal-
culate the direction and magnitude of the principal
stresses. If the material axes are fixed due to the
presence of cracking in a previous step, calculate
the componentis of stress in the fixed material axes
direction.

9. Using the total stress at the start of the current
step use an applicable material routine tension-
tension, tension-compression or compression-
compression. A typical material routine will contain
the following steps:

a. Using the ratio of the total stresses in direc-

T

Bl

on 1 and Z of the material axes., calculate

the failure stresses using failure criteria and
the failure equivalent uniaxial strains.

b. Calculate the current incremental uniaxial
strains and update total equivalent uniaxial
strains.

¢. Using the total equivalent uniaxial strains cal-
culate the correct stresses in the material.
Calculate the new material stiffness values.
This step requires the construction of the
equivalent uniaxial curve for compressive
stresses. f the material is cracked or crushed,
flag it for output.

10. Calculate the excess concrete stress in the layer.
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12.

13.

14,

15.
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If the layer is a composite layer, calculate the
stress in steel, check for yielding, correct the
total stresses in the steel, compute the equivalent
excess layer stresses due to the steel and add to
the concrete excess layer stresses.

Convert excess layer stresses intc residual nocdal
loads using proper integration and store in global
residual load vector.

Obtain element stress resultants using corrected
total stresses.

Check the incremental displacements and the residual
I

TAﬁJS fa“ A= - o

loads for conver f converged output resultvs

and go to step 1.

If iteration has not converged and the maximum
allowable number of iterations have not been ex-
ceeded go to step 4 and continue to iterate. If the
maximum specified iterations have been exceeded and
the solution has not converged output results and
store all the necessary values on a disc or tape for

a possibie restary.

Computer Program

The numerical algorithm is implemented in a computer

program written in Fortran IV language. The program is not

completely a general purpose program but a simple specialized

program written for beams, beam-columns and slabs using rec-

tangular finite element idealization. In any nonlinear finite

element analysis, implementation of the finite element formula-

tion into a computer program requires significant programming



effort. In addition, storage requirements and solution time
are also large compared to the requirements of a single linear
solution due to the fact that the nonlinear solution is a
superposition of a large number of independent incrementally
linear sclutions.

The program is in a modular form and the main program can
be considered as a driver routine which calls a series of sub-
routines to perform the different steps in the numerical solu-
tion. The general organization of the program is along the
lines given by Zienkiewicz (4#0). The input for the program
contains the following details:

1, Contrel data, such as the number of elements, number

of nodes, number of increments, maximum number of

iterations, etc.

2. Coordinates of nodal points and element nodal con-
nectivity.

3. Fundamental material properties of steel and concrete.

4, Details of concrete and steel layers.

5. Details of boundary support conditions.

6. Details of incremental loads.

A typical output contains:

1. Printout of input values for checking.

2. Incremental and total loads.

3. Residual loads and convergence factors.

L, Concrete layer stresses and strains for the elements
including the magnitude and direction of principal
stresses and the curvature values for each element.
Information regarding the cracking of concrete, angle

between the cracking direction and the x-axis and
cracking of concrete for each concrete layer.
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5. Stresses and strains in the reinforcement steel and
their yield status.
6. Element stress resultants.
The numerical calculations were done on an IBM 360/65
using double precision arithmetic for all the calculations.
Depending upon the type and size of the numerical example

considered, execution times ranged from 13 to 8 minutes.
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CHAPTER 5. NUMERICAL EXAMPLES
General

Several numerical examples are presented in this section
to show the applicability and the accuracy of the numerical
method previously developed. The theoretical investigation is
approximate in nature due to the approximations inherent in the
finite element modeling technique, approximations in the con-
crete material modeling, approximate integrations of functions
in th
due to the type of procedure used in solving the nonlinear
equations. Therefore, the theoretical results are compared
with the results from actual experiments to check the accuracy
and to suggest improvements for a better correlatiocn wit
experimental results.

Several numerical examples considering material non-
linearity alone are first presented. The numerical examples

include:

1. An under-reinforced simply supported bean.,

2. Two slabs subjected to uniaxial bending with steel
reinforcement parailiel and at angie to the applled
moment axis.,

3. A corner supported slab subjected to central concen-
trated load.

4, A simply supported slab subjected to a series of
concentrated loads resembling a2 uniformly distributed
loading condition. :
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A numerical example considering geometric nonlinearity
alone is presented next.
5. Large deflection analysis of a clamped elastic plate
sub jected to central concentrated load.
Several numerical examples of beam-columns considering
material and geometric nonlinear effects are then considered.
The numerical examples include:

6. A long slender column bent in double curvature.

7. Three long cantilever columns subjected to lateral

fFAarrmoa
- e W s b

The theoretical investigation considers the biaxial
stress field in each layer of the element to determine its
stress-strain behavior. To implement the material model in
the numerical procedure, the following experimentally deter-
mined material properties must be known.

1. The cylinder strength of the concrete, fé.

2. The initial tangent modulus of the concrete, Eo'

3. PFailure uniaxial strain of concrete (corresponding

to the peak gtress), €_ .
cu
L., Modulus of rupture of the concrete, £y-
5. The failure strain of the concrete in the biaxial
stress state of 61/62 =1 (Gic at a, = i),

Frequently except for the cylinder strength none of the
other concrete properties are documented in the experimental
investigations. When not available, the values of Eo and ft

were determined using the values recommended by the ACI code

(38). Unfortunately, the assumed value of the modulus of
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rupture is a source of uncertainty in the theoretical calcu-
lations. It was observed in some examples (e.g., the case of
slabs) that the assumed value of ft could significantly affect
the load-deflection response of the structure in the inter-
mediate range of lecading. When the information was not avail-
able, the uniaxial failure strain of the concrete was also
assumed.

In all of the numerical examples, the finite element is
divided into ten layers not necessarily of equal thickness.

~ .o T, PR - b ande o 3
Care was taken to make certai

o

» that the centroid of the
composite layer coincided with the effective depth of the
actual reinforced concrete section. It is also advantageous
t0 have thinner layers near the edge such that the moment and

extreme fiber stress values can be more accurately calculated.
Examples Considering Material Nonlinearity

Simply suppofted beam

Ultimate strength and flexural behavior of an under-
reinforced concrete beam are studied theoretically and com-
pared with experimental results obtained by Janney, Hognestad,
and McHenry (56). The team was tested with a third point
loading and was designed to assure flexural failure. The
finite element discretization, layering system and the assumed
material properties are shown in Fig. 14. The double symmetry
of the element could be used to advantage such that only one

quarter of the beam need to be analyzed.
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Fig. 14. Details of the simply supported test beam (56)
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The load-deflection response of the beam is shown in
Fig. 15. The horizontal plateau in the theoretical curve is
due to the iterations required for the same load until material
properties and equilibrium are simultaneously satisfied.
Cracking of layers results in large number of iterations be-
fore convergence can be obtained. As an example, using the
modified Newton-Raphson procedure, at the initiation of the
first crack, 16 iterations were required with one additional

updating at the end of tenth iteration before convergence could

The cracking of the concrete and yielding of the steel at
93% of the theoretical ultimate load is shown in Fig. 16. It
must be noted that the theoretical model does not predict the
number of cracks or the crack width but only the cracked zones
and the depth of the cracked zones. It must be noted that the
plate bending model. as used in this investigation., is inade-
quate to model beams that fail by diagonal tension. In such
cases plane stress elements could be used as was done by

Scordelis, Ngo, and Franklin (57) and Houde and Mirza (58).

Slabs subjected to uniaxial bending

Several isotropically and nonisotropically reinforced
concrete slabs subjected to combination of flexural and tor-
sional moments were studied by Cardenas and Sozen (59). The
experimental results of two slabs subjected to uniaxial

moment are compared with the theoretical results. The
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experimental set up, the finite element idealization and the
layering system is shown in Fig. 17. The assumed material
properties are given in Fig. 18.

Slab B-10 contains reinforcement parallel to x and y
axis. Slab B-7 contains reinforcement at angles +45° and at
-45° to the x-axis. Steel reinforcement at any arbitrary
angle to the element axes presents no serious difficulty in
the numerical calcuvlations. Due to the double symmetry of the
problem it is sufficient to consider one quarter of the slab.

Tes
i

~ E
wue v v

o the nature of applied loading it can ve assumed that a
single finite element idealizing the quarter of the slab should
give sufficiently accurate results. The moment-curvature,
moment-steel strain and moment-concrete strain plots for

slabs B-7 and B-10Q0 are shown in Fig. 19 through Fig. 23.

The theoretical results ccrrectly model the general trend

and give acceptable results but indicate

Y]
n
|-+
l-l
0
¢
&
~
n
+
ode
4
4
D
3

- - -

slab than that which the experimental results indicate. The

theoretical results of Hand et al. (12) and Lin (1%4) also show
such a tendency. The difference between the theoretical and

experimental results may be due to the following reasons.

1. The material properties which are based on the
stresses at the centroid of the element may not be
the true average for the region. Further, the
stresses in the extreme fiber are checked at the
midheight of the layer. These may have the effect
of delaying the nonlinear process.

2. Some of the concrete material properties needed for
the theoretical analysis were assumed. The actual
initial tangent modulus of the concrete, the modulus
of rupture of the concrete and the failure strain
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Fig. 18. Assumed material properties for siab B-7 and B-10
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of the concrete for the uniaxial case may be dif-
ferent from the assumed values.

Numerical results from these slabs indicate that treating
reinforcement steel as uniaxial fibers is a good approxima-
tion. The agreement of the results when the steel reinforce-
ment is inclined to the moment axis (Slab B-7, Fig. 20) is
noteworthy. The theoretical results also agree well with the

extreme concrete strains (Fig. 23).

Corner supported reinforced concrete slab

The behavior of the corner supported reinforced concrete
slab reported by Jofriet and McNeice (60) is considered in this
section. Hand et al. (12)and Lin (14) have also analyzed the
same problem considering different material modeling and finite
element idealization. The geometric details of the corner
supported slab, layering system and the assumed material
properties are cshowvm in Fig., 24,

The load-deflection response of point A and point B
(Fig. 24a) is shown in Fig. 25 and Fig. 27, respectively.

Since point A is not a nodal point, the theoretical deflec-
tions of point A were obtained by cubic interpolation. It
should also be mentioned that the cubic function is consistent
with the assumed displacement function of the finite element
model (equation 3.3). The slab was analyzed with two values
of the modulus of rupture, f, = 0.556 ksi (7.5 ﬁfg) and £, =
0.77 ksi (10.38 J£g)). The solution with fi = 0.77 ksi was

cbtained tc form at least a partial common basis to compare the
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results with that of Hand et
study the sensitivity of the

the modulus of rupture. The

al. (12) and Lin (14) and also to
solution to the assumed values of

theoretical results are compared

with that of Hand et al. (12) and Lin (14) in Fig. 26.

For the load levels considered, the theoretical investiga-

tion overestimates the slab deflections (Fig. 25).

sensitivity of the solution to the modulus of

The

rupture 1is

rather disappointing as a correct estimation of the modulus

of rupture is not easy.

The modulus of rupture can vary from

7.5 ifJ to 12 ifj. The actual modulus of rupiure of the

microconcrete used in the model is unknown.

In the numerical solution, after the first cracking
the maximum stressed layer further extensive cracking of
concrete took place before equilibrium was achieved.

increment when the first crack developed, an increase in

the increment was observed before convergence

The overestimation of deflections of slabs in

O
by

the

At the

de-

at the gtart

-

nt
< oz

could be achieved.

the intermediate

ranges of loading appears to be a major problem in the applica-

tion of the finite element technique to the nonlinear analysis

of slabs.
(12), Lin (14), Berg (23) and this study.

This can be observed from the results of Hand et al.

One source of the error could be the large area associ-

ated with each set of material properties.

This could be a

significant factor when cracking of the concrete takes place.

An improvement in

the accuracy can be cbtained by increasin
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the number of elements but at the same time this results in
increased computational effort. Lin (14) achieved some success
by adding a hypothetical unloading portion to the tensile
stress-strain curve of the concrete until the value of tensile
stress is zero at a chosen value of strain. Berg (23) reduced
the elastic modulus perpendicular to the crack in a parabolic
manner after the initiation of the crack. A tension stiffening
procedure incorporating parameters of crack spacing is yet to
be developed.

Corner supported reinforced concrete siabs are usually de-
signed using moment values based on elastic assumptions. How-
ever, the concrete is usually cracked in the tension zone
under servicé loads and therefore the stiffness properties of
the cracked slab are different. A comparison of the distribu-

tion of the longitudinal moment M_ near the middle of the slab

o LS

i~

for the cracked and uncracked glab i

- - —

n

s shown

in

l-xj

ig. 28. Crack-
ing of the concrete results in reduction of peak moment near the
center and at the ends and an increase in moments in the inter-
mediate points.

The finite element elastic solution obtained by Davies
(61) is also plotted in Fig. 28 using some interpolation. The
elastic solution of the cormner supported slab is known to be
sensitive to Poisson's ratio. The discrepancy between the two
elastic solutions may be due to the Poisson's ratio used.
Davies used a value of v = 0.15 and in this study a value of

v = 0,2 was used.
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The cracking pattern, the reinforcement steel yielding
pattern and the deflectioa alohg the centerline axis of
symmetry are shown in Fig. 29. The slab is extensively
cracked at the bottom layers. The deflection curve and yield-
ing of the steel along the x and y axis (Fig. 29) confirm
with the yield line pattern of the limit analysis. The
theoretical results (Fig. 29) are in general agreement with
the finite element elastic-plastic analysis of corner supported

reinforced concrete slabs reported by McNeice and Kemp (62).

Simply supported reinforced concrete slab

Taylor, Maher, and Hayes (63) tested several simply sup-
ported reinforced concrete slabs in order to determine the
effect of the arrangement of the reinforcement on the behavior
of slabs. Test results of an isotropically reinforced slab S-1
is chosen here for comparison purposes. The same slab was also
analyzed theoretically by Wanchoo and May (33) and Berg (23).
The geometry of the slab, the finite element idealization,
layering system and the assumed material properties are shown
in Fig. 30. The cube strength of concrete was converted into
an equivalent cylinder strength using a factor of 0.81. 1In
the experimental set up loads were applied to the slab through
two-inch square plates at 16 uniformly spaced positions. In
the theoretical investigation a concentrated load was applied

at a2ll the interior nodes as shown in Fig. 30.

The load-deflection curve for the midpoint of the slab is
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plotted in Fig. 31. As in the case of corner supported slabs,
the finite element solution overestimates the deflections. One
reason for the overestimation, as explained earlier, could be
the nature of the modeling of the cracks in concrete. Theo-
retical results of this study are also compared with the
material nonlinear analysis results of Berg (23) in Fig. 31.
Berg used a more refined quadrilateral element than the simple
rectangular element used in this study. Berg calculated
stresses and material properties at 48 points per layer per
quarter of the slab as against 25 points per layer per quarter
of the slab used in this study. Thus the simple rectangular
element and simplified procedure of calculating residual loads
has given results comparable to the solutions obtained by

Berg (23). Thus it appears from a practical standpoint

significant improvement in the finite element solutions for

slabs camnot he achieved by increasing the number of elements
but rather by improving the crack modeling of the concrete and
calculating the stiffness of the cracked slab more accurately.
The collapse load obtained by considering material non-
linear analysis alone is less than the experimental collapse
load. This 1s because geometrical nonlinear effects gain
importance near ultimate loads and the slab will take con-
siderable more load by membrane action. This can be observed
by the material and geometrical nonlinear solution of Berg (23).
The cracking pattern, steel yielding pattern, and the

center line deflecticn pattern are shown in Fig. 32. The

Y
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cracking of top layers near the corners due to corner uplift
must be noted. The cracking pattern and the steel yielding
pattern along the diagonals agree with the diagonal yield
line pattern developed during the actual slab experiment.

In the theoretical analysis at the initiation of the first
crack considerzble redistribution of stresses took place. At
the incremsnt when the first crack developed (approximately
38% of the theoretical ultimate load) an increase in midpoint
deflection value of about 600% over the value at the start of
the increment took place. The principal moments Ml and M,
along the diagonal for the cracked slab computed by the finite
element method are compared with the elastic solution given
by Timoshenko and Woinowsky-Krieger (64) in Fig. 33. The
considerable deviation in the computed moment values M; be-

tween the two methods due to cracking of the ccncrete is

Geometric Noniinear Analysis of a Clamped Elastic Plate

In the geometric nonlinear analysis, the tangent stiffness
matrix is composed of the basic element stiffness matrix KO'
the initial stress matrix Ko’ and the initial displacement KD.
Exact integration of higher order stiffness matrices are dif-
ficult to perform and simplified procedures are widely used in
generating higher order stiffness matrices. In the generation
of the initial stress matrix it is assumed that N,, N  and N

y Xy
are constants when an integration over the area is performed
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(Appendix), The initial displacement matrix is developed

by considering the total displacement gradients w,_ and w,_ to

x y
be constants evaluated at the centroid of the element while an
integration is performed over the area. Brebbia and Connor
(65) used the same rectangular element in making a geometric
nonlinear analysis of a clamped square plate subjected to
central concentrated load and used a numerical integration pro-
cedure to develop higher order stiffness matrices. Adotte
(66) solved the same plate problem by directly solving the
bpasic differential equations using finite difference and
series solution procedures. The dimensions of the plate and
the layering system used is shown in Fig. 34. The deflection
results are compared in Fig. 35. As the purpose of this

example was to check the tangent stiffness matrices generated,

no iterations were performed at any increment. It can be seen

3 Fig. 35 that for a given deflection the stiffness ({cln
1 : 3 AT 10X 2 given celilleCcTion The STiIInesse (sio

of the tangent) calculated by the three methods agree closely.
Material and Geometric Nonlinear Analysis

General

It is well known that the strength of slender cclumns is
reduced by second order deformations. Serious limitations in
the treatment of slender columns in ACI Code 318-63 led to re-
vised recommendations in ACI Code 318-71. A good background to
the current ACI Code procedure is given in the paper by

McGregor, Breen, and Pfrang {(67). The revised ccde encourages
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a rational second order analysis of slender reinforced
concrete columns whenever possible and in lieu of that
recommends approximate design procedures. In this section
several long slender columns are analyzed and the applica-
bility and the performance of the finite element procedure
used is studied. The ease of combining second order deforma-
tions, complex loading and boundary conditions, varying
material properties along the length and depth of the column,
and the time dépendent deformations in the finite element pro-
cedure make 1t very atiractive to the solution of This class
of problem. In this section a concrete column bent in double
curvature, columns that had high compressive stresses and ex-
tensive cracking near failure and columns that failied by in-

stability are theoretically analyzed.

Column bent in double curvature

Martin and Olivieri (68) tested eight reinforced concrete
columns to study the column behavior under opposite eccentric

loading. They tested the columns with ratio of end eccentrici-
e

ties El = -~0.5 to reproduce the condition of the most loaded
2

column in a building which has one end fixed at the foundation.

The columns were loaded to cause bending about the weak axis.

e

The behavior of the column 422-2 with the ratio of —52- = 0.388

where e, is the larger of the two end eccentricities is chosen

here for comparison.

The details of the geometry, layering system and the
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material properties are shown in Fig. 36. The load-maximum
lateral deflection.diagram is plotted in Fig. 37. The thec-
retical collapse load obtained was 17.5 kips as compared to
16.5 kips observed experimentally. The load deflection diagram
for the entire column length is shown in Fig. 38. The theo-
retical deflections are less than the experimentally observed
deflections. The tendency of the column to deform without any
increase in load (time dependent deformation) observed during
the experiment could be one reason for the discrepancy. Short
term or long term creep of concrete is not considered in this
study. Smaller increments of loads will also reduce the dif-
ference between the theoretical and the experimental results.
The moment diagram and the cracking pattern of the column
just before collapse is shown in Fig. 39. The shifting of the
maximum moment value from the end towards the center of the
column ig due to the secondary effects. In the experiment.
a tendency to displace the point of contraflexure and increase
the length of the main wave of the deflected column was ob-
served. A similar behavior can also be observed in the theo-
retical results (Fig. 39).
cracks at many locations at the outer surface and inside of the
column. This behavior is directly related to the tension-
compression failure criterion used in this study. It is note-
worthy that the experimental failure section was located at

L7.5" from the left end (Fig. 39) and the theoretical results
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correctly indicated the maximum stressed element at the same
location (sixth element, Fig. 39). Maximum theoretical stress

in the reinforcement steel just before collapse was 38.48 ksi

(0.81 Fy).

Long cantilever columns subjected to lateral forces

.Long cantilever flagpole type columns subjected lateral
forces is frequently encountered in civil engineering. A tall
pier subjected to longitudinal bridge forces due to braking or
wind or earthquake etc. is a typical example. Breen and
Ferguson (69) tested ten model cantilever columns subjected to
lateral forces. They studied the behavior of the columns for
different height to thickness and lateral force to axial force
ratios. Three columns Gl, G2, and G4 which showed different
failure patterns are chosen here for comparison with theory.

The geometry, layering system and the assumed material
properties for the columns are shown in Fig. 40 and Fig. 41.
The load-end deflection diagram for column Gl is shown in
Fig. 42. The theoretical collapse load was 39.375 kips while
the experimental collapse load was observed to be 34 kips. The
column sustained high compressive stresses and strains at the
maximum stressed point before failure occurred. The theoreti-
cal load prediction, which did not include creep effect, is
roughly 16% too high. Thus for short columns, rapid creep
under high compressive stresses observed in the experiments

could be the source of problem for the large deviation in
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deflection values between theory and experiment (Fig. 42).
Further, in theory the stresses are checked at the centroid
of the element whereas the maximum stress in the cantilever
occurs at the end closest to the support. This has the effect
of delaying the nonlinear behavior. Also the biaxial stress
state and the failure stresses in the critical end element are
affected by the lateral boundary conditions used for the ele-
ment riodes at the support. An improvement in the results can
be obtained when time dependent deformations are included in
the analysis.

The moment diagram, crack patterns, and deflected shape
of column Gl is shown in Fig. 43. The theoretical results
indicate a large number of flexure cracks and longitudinal
splitting cracks in the column Gl just before failure (Fig. 43).
The moment diagram clearly indicates the moment magnification
along th
maximum moment in the critical end element 1 relative to the
interaction diagram is shown in Fig. 44 in which the theo-
retical values are compared with the experimental values. The
reduction in the strength of the column due to the long column
effect is easily seen.

Length of column G2 was twice that of column Gl and hence
'column G2 was subjected to a greater moment than column Gl for
the same lateral force. Column Gl had greater lateral deflec-
tions for the same axial load and the concrete section had a

greater number of {lexure cracks. The theoretical results for
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column G2 are shown in Fig. 45 through Fig. 47. The theo-
retical ultimate load for column G2 was 10 kips as compared
with the experimental ultimate load of 10.75 kips. The over-
estimation of deflections at higher load levels may be due to
the nature of the concrete crack modeling. The concrete be-
tween the cracks might have contributed additional stiffness

to the experimental column. The maximur moment in the critical
end element 1 for column G2 relative tc the interaction diagram
is shown in Fig. 47. The theoretical results model very satis-
factorily the moment magnificavion due to the second crder
effects (Fig. 47).

Column G4 has the highest height to thickness ratios of
the three columns Gl, G2, and G4 (Fig. 40), Column G4 failed
by instability in the experiment. The theoretical load-deflec-
tion response for G4 is shown in Fig. #8. The experimental
load-deflection curve for column G4 is not available. The
theoretical load-deflection diagram (Fig. 48) correctly models
the sudden nature of the instability failure. The theoretical
collapse load was 11.5 kips as compared with the experimental
collapse load of 12 kips. The maximum moment in the end criti-
cal element 1 relative to the interaction diagram is plotied in
Fig. 49. The characteristics of the instability failure can
clearly be seen in Fig. 49. The concrete strains and stresses

were also small just before the instability failure occurred.
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CHAPTER 6. SUMNARY AND CONCLUSIONS
Summary

A nonlinear analysis of reinforced concrete beams, beam-
columns and slabs by finite elements has been presented.
Failure stresses for concrete are obtained by considering
the biaxial stress state. Empirical equations that closely
fit the experimental failure points are used to define the
failure envelope in the tension-tension, tension-compression
and compression-compression regions. The concrete is treated
as an orthotropic material. The concept of the equivalent
ﬁniaxial strain is used to calculate the material tangent
moduli in the two principal directions. Constitutive equa-
tions in an incremental form are used to define biaxial
stress-strain relationship. Cracking of the concrete is
modeled by assuming the elastic modulus of the concrete
perpendicular to the crack as zero. Different methods of
obtaining an approximate value of the shear modulus of con-
crete is discussed. The expression used for the shear modulus
results in retaining some shear stiffness for the concrete
material cracked in a single direction.

A rectangular element having membrane and bending stiff-
ness is used in the finite element analysis. Varying material
properties over the depth is modeled by using a layered dis-
cretization of the element. All of the concrete layers are

assumed to be in a state of plane stress. The steel
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reinforcement is modeled as uniaxial fibers and the layer at
the level of the steel is treated as a composite layer. Any
number of steel layers and steel reinforcement in any arbitrary
direction in a2 layer can be conveniently handled. Steel re-
inforcement is considered to be elastic-perfectly plastic.

Incremental finite element Lagrangian formulation con--
sidering material and geometric nonlinearity is used. The
scope of the geometric nonlinear effects considered is dis-
cussed. Explicit forms of the basic element stiffness matrix,
initial stress matrix and the initial displacement matrix are
presented. Simplified procedures used in the evaluation of
higher order stiffness matrices are discussed. Several
numerical techniques available for the solution of the non-
linear equations are reviewed and the incremental and itera-
tive techniques used in this study are discussed in detail.
The procedure used in the calculation of residual loads is
also discussed. A computer code has been written based on the
finite element procedure described.

Finally several numerical examples are presented. Theo-
retical results obtained by considering material nonlinearity
alone are compared with the experimental results for a rein-
forced concrete beam and a number of reinforced concrete slabs.
Geometrical nonlinearity is included in the analysis of beam-
columns. Several columns which failed by instability and by
material failure due to moment magnification are studied. The

theoretical results are compared with the experimental results,
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Conclusions

1. The orthotropic material model for concrete essen-
tially duplicates the experimental biaxial stress-strain curves
in the tension-compression and compression-compression region.

2. The simple coricrete cracking model used in this in-
vestigation gave very good results for the under reinforced
concrete beam analyzed (p ® 0.5 Py where p is the percentage
of reinforcement and Py is the balanced percentage steel). The
results were also satisfactory in the case of columns. Hence
it can be expected in a nonlinear analysis of reinforced con-
crete frames, the simple cracking model for concrete adopted in
this study should give very satisfactory results.

3. The results of this study for the case of McNeice slab
gave better results than that obtained by Hand et al. (12) (bi-
linear elastic-plastic concrete material) and Lin (14) (elas-
tic-plastic concrete material) as can be seen from Fig. 26.

4. A more realistic estimate of the distribution of
moments under sService loads can be obtained by comnsidering the
cracking of the concrete and using the finite eliement procedure.
This has been illustrated for the case of corner supported slab
in Fig. 28 and for the case of simply supported slab in Fig. 33.

5. In the case of simply supported slab, the results ob-
tained from this investigation for a material nonlinear analy-
sis using a simple rectangular finite element model and the

simplified residual load calculation procedures gave comparable
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results to the material nonlinear analysis results obtained by
Berg (23) which used a more refined finite element model.

6. Overestimation of slab deflections in the intermedi-
ate range of loading is a common feature of all the theoretical
investigations using finite element technique. Use of a very
refined biaxial model for concrete in tension-compression and
compression-compression regions (as used in this study), or
including the effect of geometric nonlinearity (Berg, 23), or
increasing the number of points at which material properties
are evaluated within practical limits (Berg, 23), do not sig-
nificantly reduce the problem of overestimation of deflections
in the intermediate range of loading.

7. The theoretical investigation of slabs has indicated
that the next important step in the finite element analysis of

reinforced concrete slabs is the development of satisfactory

parameters which affect the crack spacing like the bond-slip
characteristics, reinforcement spacing, percentage reinforce-
ment, etc.

8. The finite element method predicts the beha&ior of re-
inforced concrete slender columns very satisfactorily.

9. In the case of columns with low slenderness ratios it
is necessary to include the time dependent deformations to pre-
dict accurate collapse loads and the load-deflection response.

10. When combined material and geometric nonlinearity is

considered, numerical instabilities can occcur. The simplified
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procedure for calculating the residual loads as explained

in Chapter 4 and used successfully for columns did not work
well for the case of simply supported slabs. However, in
such cases solutions can be obtained by changing the solution

technique as was done by Berg (23).
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APPENDIX: EXPLICIT FORMS OF THE MATRICES IN THE FINITE
ELEMENT FORMULATION
Explicit forms for a number of expressions for the
rectangular finite zlement used in this study are presented
in this Appendix. The rectangular finite element has both
membrane and bending stiffness. The assumed displacement

functions for the inplane displacements u and v are as

follows:
l.al l.a5
---az ".(13 --036 yna7 (1‘1-1)
Xy.a, Xy.g
u-displacement v-displacement

The assumed displacement function for the out of plane dis-

placement w is given by

2 > (.2)
X G2 AR MRS

x3.315 xzy.als xyz.al7 y3.a18
xdy.ag xy3.a5,

where the a's are the generalized displacement parameters.

The relation between a’s and the nodal displacements r is

given by,

a = C-lz‘ (A.3)

where C™1 is a function only of element dimensions. For con-
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venience the explicit forms of C'l for inplane displacements
and out of plane displacements are given in two separate
tables, Table 1 and Table 2, respectively. The matrices given
in Table 1 and Table 2 are combined to form 2 single ¢t
- matrix. The actual form of the combined C—l matrix will de-
pend upon the order of the listing of nodal displacements.
In the numerical calculations all of the nodal displacements
were listed in the order as given by equations 3.4 and 3.5.

The relationship between the displacement gradient vector
d and the generalized displacement parameters a4 is given by
the relation

d = Da (A.4)

The explicit form of equation A.4 is given in Table 3. The
expression for the basic stiffness matrix as given by equation

3.32 is

m
Ly

Ko = Jo DT(c.lelL'g) DCTT. av (A.5)

Equation A.5 can be rewritten as,
At T ™ -1

Kg=C AJ;ea[D Jz‘(c.le.le) .dz . D. drjc (M. 6)
The innermost integral over the depth is replaced by an inte~
gration of the individual layer and a summation of all the
layers. Defining a 20 matrix for the innermost integral we
get hj+l T
2 = = ﬁ. (cijLiLj) dz (A.7)

°
layexs
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The explicit form of the ﬁo matrix is given in Table 4. Pre

T

and post multiplying ﬁo matrix by D® and D, respectively, and

integrating over the area according to equation A.6 we get

~

K1 = | DTKOD . dA (4.8)
Area

where K1 is a 20 x 20 matrix. The explicit form of K1l is
lengthy and is given in Fortran Code form in Table 5. The
basic stiffness matrix K, (equation A.6) was obtained by pre

T
1 and C'1

and post multiplying K1 by C~ , respectively, during
the course of numerical calculations. In the computer coding
K1(20 x 20) was treated as a work space and the same space was
used in the generation of the initial stress and the initial
displacement matrices. Hence, the use ¢f the same notations
for XK1 in Tables 5, 7 and 9.

.The initial stress matrix as defined by equation 3.29 is
X = 10 l—_l _H-iIlC. « 0. « QV (_!‘1-9_\[

Equation A.9 can be rewritten as

K = C"’lT J‘ DT J. (Hi Oi) dz . D . dA . C-l (AolO)
G Area Z
Defining the innermost integral as ?6. we get
’120 = J H, oy . dz (A.11)

2
Equation A.1ll is integrated using the layered discretization

and the ﬁc matrix is given in Table 6. Assuming that the

stress resultants N, Ny and ny evaluated at the centroid are



148

constant over the area we get,

T
K, = ¢ x1c? : | (A.12)

where K1 is defined by the following equation,
KL= [/ D'R D.aa (4.13)
Area
The K1 matrix defined by equation A.13 is given in Table 7 in
Fortran Code form. The premultiplication and the posimulti-

L. 17T -1
plication of K1 by C and C

was done during the course of
the numerical calculations.

The initial displacement matrix is given by

Kp =Ky + Kg + K, (A.14)
where
T
1T AT 17T .-17 T -1
—'-' S e .T bd 3
=it T -ii_c.. *r ¢t p'H.DC .av (a.16)
K, = J;c D H.lDC r "ij J

From equation 3.17, equations A.l5 and A.16 can be rewritten

as
K, = {rc'lT v e;5L; 14T Hch'l . dv (A.17)
K, S SO B . e T (A.18)
v 1 1) J
where ldT is the total displacement gradient vector at the

start of the increment.

Considering first the K, matrix and defining a'ﬁi matrix
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we get
1T P -1
K, =¢C i) DﬁlD.dAec (A.19)
Area
where,
_ 1.7
’Rl = J; L; ;i ; a Hj . dz (A.20)

The ﬁl matrix is given in Table 8. The quantities w,, and

w,y in Table 8 are evaluated at the centroid of the element.

Equation A.19 can be rewritten as

m

-1t -1

K, =C Kl C ' ' (A.21)

where,

KL= J DT’KlD.dA (4.22)
' Area

K1 matrix is given in Table 9 in Fortran Code form.

Considering next the X, matrix, equation A.18 can be

rewritten as

T
K, =¢> [ D'R,D.ar (4.23)
Area '
where,
‘K—“Hld 1.7 . PN

The'ﬁ2 matrix is given in Table 10. The quantities w,, and
w.y in Table 10 are evaluated at the centroid of the element.

Equation A.23 can be rewritten as,

KlcC (A.25)



where

Kl= [ D'R,D.ar (A.26)
Area

The matrix K1 is the same as that given in Table 7 except
that the values of KA, KB and KC are those for the ﬁz matrix

given in Table 10. The KD matrix is obtained using equation
A.14,



Table 1. C-l

!
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matrix for inplane displacements

4 3 Y3 _T—
Q =
v v
' L ! 2 Li L
X
Y1 Y2
—— a ——|

1 2 3 4 5 6 7 8
a 1 1 L] . L] L] * . - ul

1 1
[0 4 2 - a . a . . o . . vl

_1 1
04 3 b . . . . . b . u2
_ b 1 i i
Cpi = ab ‘ ab . ab . ab . /)
a 5 . 1 . . . . . . Uy
1 1
a 6 . - a Y a . . . . V3
(1 . - 1: ° . . . . l u
7 b B A
@ L L L L v
8 ) ab : ab ° ab . ab 4




Table 2. C-l matrix for out of plane displacements
Ay
Wq_ W3
Vsl 4 3] _1- :’X:i
W ’y3
svly y
Y -1
0 r
1 1 2 L w?
w’x1 - X :’x?.
w’yl | i *y2
1 2 3 4 5 6 7 10 11 12
(0'9 l [ . . 3 . . . . ] le
alo . ]. . [ L] L] . . L . w’xl
all . . 1 [ . . . . . L w’yl
3 2 3 L
(04 — = —_ P
12 2 a ¢ 2 a . . . . . w2
a a
a 1 1 1 1 i _ 1 1 1
13 ab b a ab a ab ab b Vsx2
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Table 3. D matrix
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11 12 13 14 15 16 17 18 19 20
. . . . . . . . . . 1—
. . . . . . . . . . 2
. . . . . . . . . . 3
. . . . . . . . . . 4
. 2x v . 3x2 2xy y2 . 3x2y y
1 . x 2y . x2 2xy 3y2 x3 3xy
. 2 . . 6x 2y . . bxy .
. . . 2 . . 2x 6y . bxy
. . 1 . . 2x 2y . 3x2 3y2 aZO




Table 4. ﬁO matrix (summation of all layers)

1 - 2 3 4 5 7 8 9
cll'tj c13.tj c13.tj clz.tj -cll.HJS -clz.HJS -013.238 ,
(K11) (K12) (K13) (K14) (K17) (K18) (K19)
c33.tj c33'tj c23.tj -clB.HJS -c23.HJS -c3aéHJS ,
(K22) (K23) (K24) (K27) (K28) (K29)
(X33) (X34) (K37) (KR38) (K39)
c22;tj -c21.HJS -c22.HJS -czaéHJS .
(K44) (K47) (K48) (K49)
Symmetric * : : * 5
L[] * L] 6
cll.HJC c12.HJC clBéHJC ,
(K77) (K78) (K79)
C,,.HJC Ch,HJIC
22 23.2 8
(K88) (K89)
n2 . - n? nl o - n3
HJS = _j+1 j_ 5 HIC = _j+l j c33.HJC
2 : 3 4. 9

(K99)

#6 T



Table 5. Kl matrix in the development of basic stiffness matrix

15

e e o0 2 o e ofe ke e e e e e el e b e e 0l e b Ao e e i A o Ok e ok e ok 8k K ok ok g e oK e ook o o g o ok ko ok ook koo Kok

IMPLICIT REAL * 8 (A-H,K.0-2Z)

A— X DIMENSION OF THE ELEMENT
8~ Y DIMENSION OF THE ELEMENT

AR~ AREA OF THE ELEMENT

ARA=ARXA

ARB=AR%B

AR2=AR%®AR

ARA2=ARXAXA

ARB2=AR%*B* B

AR2B=AR228B

AR2A=AR2%A

ARA3I=ARA2*A

ARB3=ARB2%*8

AR2A2=ARM»ARA2

AR2B2=AR* ARB2

A2=A%A

B2=B*B

A3=A2%A

B3=8B2x%8

K11eK12+sK13 o e « oK99 ETCe ARE DEFINED IN TABLE 4.

s e o ok ok o ok o o ok ok ol o o o o ofc ok oA o o ook o 3k ok ok o e ol o ok e ok s s o ol ok ook ok o o o ol o s ok ok ok ok ok e ok ko e o e ook ok ok o ok

DO 15-1=1,20
DO 1S JU=1,20
K1(IsJ)=0eDO

K1(2,2) =K11*AR
K1(2+,3) =K12%AR
K1(2+4) =(K11%ARB+K12%4LRA) *¥0.5D0

GST
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0QS* 0% (VUTH6SH+BUVEEIN)=

(ET*¥) M

VHEVRLSH+AUYRLIN= (ST*9) TN
0Q°E/7CVUHVYHPSHH0A* $/72UVHCEAHH0Q°V/72HVYVERTIHH0Q L /723UHY R IN= (B*%v) 1M
0AS O (VUYRvSH4BHVRVIN)= (L*P) I
0aS*Ox (VTS H+BUYRSIN) = (9¢%) I
00°E/(0AS°® Ix2UHVRZINHESVUHVERCZH+ZBHVYRTINI= (Vo) I
caUVYX6CHFOAS * T UV XBEH= (02°E) I
CVUVYR62HE0AS* IxZ2 UV LCH= (6T1°¢E) 1IN
0a°*Lxi3uVeBSH= (BL*E)IN
BUVE6SH+THVRBEH= (LT*E) I

V762 A+8aVELECH = (ST ¢E)IN
0Q°*ExVHV*kLSH= (ST*E) TN
0g*ehyvxgeAH= (vlI*E) 1IN

Hvx6eiH= (ET1*E)INA

0Q°*ckdvVxLeEN= (CT1*E)IHN

0QS*Ox (Vv vSHH+BAaVYVREECAH) = (B*E) I
UVRvSH= (L*E) A

dvxeeid= (9¢€) X

04SSO0 (ViHVXC2N4BHVHX2INI= (VEE)IN
dv¥xkeern= (E°*'C€) XA
cAUV6TM+0AS * I x2uV%8IN= (0c*S) 1IN
CYUHVYH6 TAH+0AS I x2HVRLIN= (61°¢2) 1IN
0Q°ExqUV%8IN= (8T1¢2C)IMN
BUHVE6 I N+VUHVYRBIN= (21%2) 1
Vv I N+8UHVRLIN = (91¢2)1IX
0Q*ExTUVALIN= (ST*2) 1IN

0Q UV IMN= (VI*2)IN

dvkeld= (£1¢2)1IX

0Q*CxuvaLIN= (21*2)1IN
0QS*0x(ViIVRvIN+BUHY XS INDI= (842) 1
Vv Id=  (L2°¢2) 1A

yvseS = (9¢2)1 M

(penutjuod) G d1qey
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OG E/Z (0QS® Ix2UVRUSHFCVUHY kDUN+EHBUVYREENH) =
COYVRO6VHE0AS ® 12 UVXBYIN=

SVUHVH6VH+0AS * IxZHVEBIN=

00 ExBUVYRBYA=

AVEO N+ VUV RBVIN=

VUV %6 X+ 3UHYRB I A=

0G°ExVHYXBIN=

0 2HruvVEBYIA=

HVX6VAH=

0Q°ckUvkBIN=

SO (VUVRUYPIH+EUVEVSH) =

UV koA=

caUV*62:M+00S ° I %2 UVYRBEH=

CVUHVYERO6CAH+0AdS * IxSHYRLCH=

0d°ExgHY%BEA=

GUVR6HH+VIHYRBEAH=

VUV 6SH+GUYRLSH=

0Q ExVHVYRLEH=

0g*S*xUVEBCH=

HVYR6EMN=

0Q°*2xUVRLEH=

0QS*OR( ViV SH+BUYRESA) =

yvikvel=

HVkceiH=

00S 082 UYRGIN+VYCUYRBCIH+00GL° O%EBIVROIN+BCUVRBIN=
0QSL 0XEVUVROGEHHVSUYRLSAH+0AS * 0V HVHO6T N+B2UVYRL =
00S* I»CUVYVxBEH+0Q°SxCBUVXBIII=

0Q0S* 0% CUVROESH+IVHAX VUV RBEH+IVUHIRCBUYEOTIN+0AS 02UV B IDI=
OVHIAZVUYA6SHF0AS 04UV RLESHH0AS * 02 UVROINHIVHSRCBUVYRL IN=

(8¢8)1
(02*2)1M
(6T¢L) I
(BT*2)IM
(4T%2) 1
(9T *L3 1A
(st*2)1H
(V1 4L) 1
(ET*2)1H
(ei*L)id

(8¢2) 1M

(22314
(0S*9)1IM
(61¢3) 1IN
(819}
(LU*9) 1IN
(P1¢3) 1A
(S1*9) 1IN
(v1*9)1I
(£1°9) 1™
(2149)1H

(8¢9)1H

(249)1M

(9¢9) 1
(0C*») I
(61¢v) I
(BT¢*v)I
(LT*®)IN
(91 ¢v)1I

0Q*£/00°2=2Vyd

0Q°*CHSVHYRLZH+0AS T x2UHVRLDI= (ST*H) 1IN
VHvx8CH+BUVXRGIMN= (Vv1¢¥)IN
(penutiuon) G aTqey
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0Q°2H2VUHVHO6E U0 EHCUVRBIN=(6T* V1) I
00 °* 9% UV 88X={8T*V¥1)IXN

00°Ck (BLIV%6BIH-VHVRBBAI={LT* VT ) I
OQ°CHVUVRE6EIA+00°ChUVRBLA={9T*H1) 1IN
00 I%VUHVYBLA=(ST* V1) IN

AV xBBA={¢TI¢ VI ) IN

2OUVR 661 1100S* IxUVX68A=(0Z2*ET) IN
CVHVA66IT0AS * I UVAOGLN= (6T ET )TN
0Q°EXxQUYRO6BA=(BT*ET) I
EHIVROEO6A+VUYHOEBA=LL T L T) IN
ViaVR66X+BUVHO6LA=(OTC LT ) I

0 ExVUVYHOLA=(ST*ET) IN
0Q*2xdvaesX=(vIitcl) I
UVHO6OAN=(ET*EL )TN
00°2Z2»2aUVROLA+0A°EXZUVRBLAN=(0C*CT) IN
0Q°2C#2VUVR6LM+0Q°ExZUVELIN=(6T*CT) I
00°*I%3UVYRBLA=(BT¢2T1) 1IN

00°C*UYH 620400 °2xVUVEBLA=(LT*CT) TN
0Q°CRVUVROE6LA+00°CxTUVRLINZ(DTCZT )TN
0Q*9%VHYRLLI=(SI*ZT)IN

0Q° v AUVERBLIN=(HTI¢CL) IN

og e dvYEeLA=(ETI* 2T ) IN

0 vhUVRLLA=(STI*2T ) N

00S 0%82UVX6UNHVIUVXBUYNH+0QSL® O%EBUTR6SAHHEZI UV RBEN= (02¢8) I
O0QSL°O%EVHVROEVIIVCUVEB INH+0AS 0 RVSUVRESHTBZUVYRLSAHA= (61 ¢8) 1IN

00S*® Ix2HVAB¥X+-0Q0°2 %2 3UVEBSCH= (B1*B)1IN
00S*ON2UVHOVI+IVUARZVHVERBUN4DVHIXCBUVRESHH0QS *0 %2 UHVRBSHA= (L1¢8) 1IN
VUSRS VUVRO YR+ 00S* #CUVAB INF0QS 02U VERHSH $IVUIRSAUVRLSH= (91°8) IN
0Q°*2x2VUVHXBIN+0AS® I %2UVRLEN= (ST ¢8)IN

VHV*BvX+EUVEBEH= (¥1*8) 1IN
0aS*0*x(VUV6DI+EHVE6CH]I= (E1°8) 1IN
VvV 8IN+3uVYkLEN= (CT1°8) 1IN

(penutauo)) 5 OTqRBy
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(I¢r)IDI=(re1)id 91

Irtl=r 91 00
I-I=1r
oe¢*2=1 91 0a

0Ad°*G5/00°6xBxE£QUVXOONHF0QS * 2 BSUVREBIN+0T* vV EZUVEBBI=(02°02) I
cuvxl
HYX66N+0QAGC*Z%CVHVHO6BN+00S2C *2 2 B2 HVHOLN+0 I UxHVRZHYRBLA=(0ZC*0T) IX
00°S/0Q° 6V REVUHVH66H+0AG %2 VSHYROIAFO D URUV AUV XLIA=(61*6T1) I
0dS*vEBUVX68M+00°*I%B2UVX88UN=(02* 81 )1 A
0Q°EAxV2UVX68M+00°I9%B2UVXBLA=(61*°BT ) I

0a°* 212UV uBBA=(8T1*BI) I

OGS * IR EBUVYR66AU+0Q°EXQSUVYRO6N+0T SRV UHYXBBA=(0C* LT ) IN
VZUVRE6EI+00 2B IUYX6IN+00S® IxEVHVARGBA+0Q° VUV ABIN=(6T*LT) I
00° v%2aUVX6N+00° EXx2UVH8BA=(B1* LT )N
U(d&ioo.N*Nmm<*00¥+oo-N*NQ(*OQ!+U<¢1*OC.N*N(Z(imwzlnh—.hﬁvax
B2UHVX66M+00°2RVeUVAOBA+00S* I kEQUVROELN+00*2%B2UVXBLAN=(0C*91) I
00S®* I XEVUVYXGOMNF00°ERVSHVROLN+00* A2 HBYVRLI=(6T1*9T ) 1IN
0Q°E*2HVR68H+0Q° vk CBIVEBLIN=(BI*9T1)IA

CUVRO66H+IVUAR00° 2 42 VHYH68N+IVUIH0Q*CHCBUVRGIN+CUVRBLIN=(LTI*IT ) I
IVUHA%00°2%2VUVEO6XH+00° Z2H2UVRELN4DVUIX0Q*Ck2BEBVALN=(9T*IT) I
0Q°ExBCUVRELN+0Q* VUV FLU={0S*ST )N

OQS® OFEVHVRO6LAN+0Q*IxVSHVALLN={(6T*ST) I

0Q°6%x2HVXB8IN=(BL1*GTL) 1IN

0Q°EXxCHVYROLARA+0Q VR CVUY*BLA=(L1*ST) I

0Q°* URSVUVYROLAN+0AEXCUVRLLIA=(D9T* ST ) I

002 TCVUVRLIN=(GTI*ST) 1IN

00 °cx2BUHYX6EBAH+0Q*EXCUAVREEAN=(02* ¥1) 1M

(penutauon) G 81qey
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Table 6. /IE o matrix
1 2 5 6

B . L] L] L ] l
- . L] L] 2
L] - * 3
- . [ ] . h’*
- . Nx ny 5

(Xa) (KC)

N N

Xy y 6

(KC)  (KB)
* L ] L] L ] 7
. L ] * o 8




Table 7. Kl matrix in the development of initial stress matrix

e 3 o ok £ ok e ok o % e o e 3 e o afe e ke ok ko e ok e 3k ke xde o o ok ok ok ok e e Xk ke e ok o o e o ok ek e odook % Xk e ok e e ok ok ke o kK

IMPLICIT REAL % 8 (A-t,K,C-2)

A— X DIMENSICN OF ThE ELEMENT
8- Y DIMENSICN OF THE ELEMENT
AR— AREA OF THE ELEMENT
ARA=ARKA

ARB=ARXE£i

AR2=AR% AR

ARA2=AR*¥ A% A

ARRB2=AR%B%*E

AR2B=AR2%B

ARZ2A=AR2*A

ARA3=ARA2Z%A

ARB3=ARE2%E
ARZ2AZ2=AR¥ARA2
AR2B2=AR%XAREBE2

AZ2=A%A

82=68%08

A3=A2%A

B83=B2%8

AR3=AR2X AR

AR4=ARI%XAR

ARA4=AR AL 3*A

ARB4=ARE 3%PE

ARAS=ARA4% A

ARBS=ARB4*E

ARAE=ARASKA

ARB6=ARBS* B
AR3A=AR2AX AR
AR3B=AR2B% AR

191
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Table 7.

(Continued)

AR3A2=AR3A*A
AR3B2=AR3B%*B

AR2A3=ARZ2A2*A
AR2B3=AR2B2%*i5
AR2A4A=AR2A3%A
AR2B4=AR2B3%*3
KAyKB3sAND KC ARYE CEFINED IN TABLE 6.

e v 3 o g o koo g ok e o e ke e o o e ok e ok ok o koo o ek ok o ok ok ke ook ak o d koK e 3k ok ok i ak ol b ok o ke sk ok o ok e ke kX ke ok sk ok

DO 100 I=1,20
00 100 J=1,20

K1(I+J)=0.D0

K1(10+10)
K1¢(104+11)
K1{10+12)
K1(10+13)
K1(10s14)
K1(10+15)
K1(10,1€)
K1(10+17)
K1(10,18)
K1(10,19)
K1(10,20)
K1(11,11)
K1{11,12)

it

It

KAX¥AR

KCXAR

KAXARA
KAXARB%«SDO+KCH*ARAX 4500
KC*ARSB

KAXARA2
KA%AR2% ¢ 5SDO0+KC*ARA2/3.D0
KAXARB2/3D00+KC%*AR2%,500
KCxARB2
KAXAR2AX e SD0+KC«ARA3%425D0
KAXARE 3% 2SD0+KIZXAR2B%05D0
KB%AR

KCXxARA

K1(11413)=KC*ARB*«SD0+KB*ARAX,5D0
K1(11,14)=KB¢ARS

K1(11+15)=KC:KkARAZ2
K1(11916)=KC*AR2*«5D0+KB*ARA2/3.D0
KiI(11+17)=KC:kARB2/3.,CO+KB*AR2*,500
K1(11+18)=KBkAREB2

291
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0QSL*OXVENVHIN+0ASZ 0% BEAYxUYN=(0S*ST) I

0dS* ORSVEVAIR+00AS* O%EVCHY RVI=(6T1*ST)IA
EHVROIA=(BI*STI)I A
00S2°0%2ViUVXIN+00°E/CHVRYA=(LT*ST) IH

003 °0%HVUHVADIN+0AGL 0¥ CVSHVEVA=(ST*ST YA
0Q°*°S/7CAU°OxHVHYXVYA=(ST*GT) 1IN
0QS2°0%x282uVxBA+0UY* 78UV EIAN=(02* LTI ) 1IN
0QG2*0%2V2HUV%BU+0A*E/DG*C»EHVXIAN=(HT*HT )TN
OAG*IxEQHYXBI=(BI*HI)IN

00°€/700°2»B2uVXxAA+00S° *xEBAVHIA=(LT* 7 {) 1A
0Q°E/V2HV4BI>00°E/700°2x82UVLIN=(OT*H )T
veavadA=(STI*v 1) I

0Q°E/00Q°HxcBUVLEA=(HT*HT )TN
0Q°E/EYVAXBH+0US* %Cd UV ¥IA+0UC* %x7BUBYxVYN=(0C*ETL)I A
0Q2* 0% hVHVAEIN+0QS 022V UV EIN+0Q E/CHVAVYIN=(O6T*ET )T A
00S*°0xB2HV%aN+0QAGL°0%EBUVARIN=(BT*EL )TN
0g°*E/veuvx8l+0QG*0%x82HVXIN+ 005 **xEAUVEYN=(LT*CT) TN
0QS2 *2EVHY %8N+ 00S*I%RVUVRIA+0UE /G UV RVYI=(ITCET ) M
O00SL°OXEVUHVXINA+0QAS OV UV AVYA=(ST*ET) IH
0QS*0x28VxBM+r0A0°E/00°C*28UVYxIA=(HTCET )N
0Q°*E€/2VUY 3N+ 0AG° x CUVYXIN+0U*E/2BUVYRVA=(ET*ET)INA
0Q°E/700°2%£UVRIN+005*%x232UVAUYN=(02*2CT) Iy

0QY % HVHVEINH+0ASL %2 VZHYRIYA=(6T1CTL )T

82UV IOAR=(81¢<21) I

0C°*E/00° kY CUYRDIAF+0UE/B2UVLVYNA=(LT*2 1) I

0SS *xEVHVYXIIIF0AE/0Q° RV ZHYXVYA=(3T*2T )T

005 * 1 xEVdVaYN=(GTI*cT)IN

SHVYRIAN=(HT¢CT )1
0Q°£/00°*2%ZVEVYXON+00S*x2HVAVI=(EL*CT )1

0g°* /00 yxcvaviud=(2T¢21) 1A

0dS* %BcUVYxBA+0U* H/7EBYVEIN=(0CTT) I
O0QSC*%EVUVEXGNH+0US* A2V UV LOIA=(6T* 1T ) I
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Table 8. ?1 matrix (summation of all luyers)a

1 2 3 4 5 6

(cll.w,x+c13.w,y) (clz.w,y+c13.w,x)

L .tj .t
(K15) (K16)
(cw.w,x+c33.w,y) (c23.w,y+c33,w,x)
. . L] .tj .tj
(K25) ((K26)
(clii'w’x+c33"w’y) (c23.w,y+c 33 w,x)
L] L ] L ] . .tj .tj
(K35) (K36)
(clz.w,x+c23.w,y) (czz.w,y+c 23.w,x)
L] L] L] . QCJ .tj
(K45) (K46)

(cll.w,x+013.w,y) (CIZ'W’y+c13'w’x)

. . . . LHIS. (-1) JHIS. (-1)
(K75) (K76)



(clzuw,*+c23.w,y) (c22.w,y+023.w,x)

. . . JHIS. (-1) JHIS. (-1)
(K85) (K86)
(clz‘..w,x+c33.w,y) (c23.w,y+c33.w,x)
. . . 1-(-2) '}US o(-z)oHl]S
(K95) (K96)
thickness of the jth layer; ILIS = h2 - h2
’ ? j+1 i
2
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Tatle 10. ‘ﬁz matrix (summation of all layers)a

1 2 3 4 5 6 7 8 9

., . . . . . . . ] 1
. . . . KA KC . . . 5
. . . . KC KB . . . 6
. . . . . . . . . 8

- . . . . . . . | 9

%A—[c 11- s 2]

) +2c3(w, .w,)+c3(w,) t.;

X J
2
—[c22 (w,y) + 2.Chq0 (W, oW, )+ Cgq0 (W, ) ]t
KC -[cl2 (w,x.w, ) + ci3° (w, ) + Chge . (w, ) + c:33 (w, <V )}t .
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